I Introduction 1
1 Administrative Optimization of Proteomics Networks
for Drug Development 3
André van Hall and Michael Hamacher
1.1 Introduction 3
1.2 Tasks and Aims of Administration 4
1.3 Networking 6
1.4 Evaluation of Biomarkers 7
1.5 A Network for Proteomics in Drug Development 9
1.6 Realization of Administrative Networking: the Brain Proteome
Projects 10
1.6.1 National Genome Research Network: the Human Brain Proteome
Project 11
1.6.2 Human Proteome Organisation: the Brain Proteome Project 14
1.6.2.1 The Pilot Phase 15
References 17
2 Proteomic Data Standardization, Deposition and Exchange 19
Sandra Orchard, Henning Hermjakob, Manuela Pruess, and Rolf Apweiler
2.1 Introduction 19
2.2 Protein Analysis Tools 21
2.2.1 UniProt 21
2.2.2 InterPro 22
2.2.3 Proteome Analysis 22
2.2.4 International Protein Index (IPI) 23
Proteomics in Drug Research
Edited by M. Hamacher, K. Marcus, K. Stühler, A. van Hall, B. Warscheid, H. E. Meyer
Copyright (C) 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31226-9
Contents
VI
2.2.5 Reactome 23
2.3 Data Storage and Retrieval 23
2.4 The Proteome Standards Initiative 24
2.5 General Proteomics Standards (GPS) 24
2.6 Mass Spectrometry 25
2.7 Molecular Interactions 27
2.8 Summary 28
References 28
II Proteomic Technologies 31
3 Difference Gel Electrophoresis (DIGE): the Next Generation of
Two-Dimensional Gel Electrophoresis for Clinical Research 33
Barbara Sitek, Burghardt Scheibe, Klaus Jung, Alexander Schramm and
Kai Stühler
3.1 Introduction 34
3.2 Difference Gel Electrophoresis: Next Generation of Protein Detection
in 2-DE 36
3.2.1 Application of CyDye DIGE Minimal Fluors
(Minimal Labeling with CyDye DIGE Minimal Fluors) 38
3.2.1.1 General Procedure 38
3.2.1.2 Example of Use: Identification of Kinetic Proteome Changes upon
Ligand Activation of Trk-Receptors 39
3.2.2 Application of Saturation Labeling with CyDye DIGE Saturation
Fluors 44
3.2.2.1 General Procedure 44
3.2.2.2 Example of Use: Analysis of 1000 Microdissected Cells from PanIN
Grades for the Identification of a New Molecular Tumor Marker Using
CyDye DIGE Saturation Fluors 45
3.2.3 Statistical Aspects of Applying DIGE Proteome Analysis 47
3.2.3.1 Calibration and Normalization of Protein Expression Data 48
3.2.3.2 Detection of Differentially Expressed Proteins 50
3.2.3.3 Sample Size Determination 51
3.2.3.4 Further Applications 52
References 52
4 Biological Mass Spectrometry:
Basics and Drug Discovery Related Approaches 57
Bettina Warscheid
4.1 Introduction 57
4.2 Ionization Principles 58
4.2.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) 58
4.2.2 Electrospray Ionization 60
4.3 Mass Spectrometric Instrumentation 62
Contents
VII
4.4 Protein Identification Strategies 65
4.5 Quantitative Mass Spectrometry for Comparative and Functional
Proteomics 67
4.6 Metabolic Labeling Approaches 69
15
N Labeling 70
4.6.1
4.6.2 Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 71
4.7 Chemical Labeling Approaches 73
4.7.1 Chemical Isotope Labeling at the Protein Level 73
4.7.2 Stable Isotope Labeling at the Peptide Level 75
4.8 Quantitative MS for Deciphering Protein–Protein Interactions 78
4.9 Conclusions 80
References 81
5 Multidimensional Column Liquid Chromatography (LC) in Proteomics –
Where Are We Now? 89
Egidijus Machtejevas, Klaus K. Unger and Reinhard Ditz
5.1 Introduction 90
5.2 Why Do We Need MD-LC/MS Methods? 91
5.3 Basic Aspects of Developing a MD-LC/MS Method 92
5.3.1 General 92
5.3.2 Issues to be Considered 93
5.3.3 Sample Clean-up 94
5.3.4 Choice of Phase Systems in MD-LC 94
5.3.5 Operational Aspects 97
5.3.6 State-of-the-Art – Digestion Strategy Included 98
5.3.6.1 Multidimensional LC MS Approaches 98
5.4 Applications of MD-LC Separation in Proteomics – a Brief Survey 100
5.5 Sample Clean-Up: Ways to Overcome the “Bottleneck” in Proteome
Analysis 104
5.6 Summary 109
References 110
6 Peptidomics Technologies and Applications in Drug Research 113
Michael Schrader, Petra Budde, Horst Rose, Norbert Lamping,
PeterSchulz-Knappe and Hans-Dieter Zucht
6.1 Introduction 114
6.2 Peptides in Drug Research 114
6.2.1 History of Peptide Research 114
6.2.2 Brief Biochemistry of Peptides 116
6.2.3 Peptides as Drugs 117
6.2.4 Peptides as Biomarkers 118
6.2.5 Clinical Peptidomics 118
6.3 Development of Peptidomics Technologies 120
6.3.1 Evolution of Peptide Analytical Methods 120
Contents
VIII
6.3.2 Peptidomic Profiling 121
6.3.3 Top-Down Identification of Endogenous Peptides 123
6.4 Applications of Differential Display Peptidomics 124
6.4.1 Peptidomics in Drug Development 124
6.4.2 Peptidomics Applied to in vivo Models 127
6.5 Outlook 129
References 130
7 Protein Biochips in the Proteomic Field 137
Angelika Lücking and Dolores J. Cahill
7.1 Introduction 137
7.2 Technological Aspects 139
7.2.1 Protein Immobilization and Surface Chemistry 139
7.2.2 Transfer and Detection of Proteins 141
7.2.3 Chip Content 142
7.3 Applications of Protein Biochips 144
7.4 Contribution to Pharmaceutical Research and Development 150
References 151
8 Current Developments for the In Vitro Characterization of Protein
Interactions 159
Daniela Moll, Bastian Zimmermann, Frank Gesellchen and
Friedrich W.Herberg
8.1 Introduction 160
8.2 The Model System: cAMP-Dependent Protein Kinase 161
8.3 Real-time Monitoring of Interactions Using SPR Biosensors 161
8.4 ITC in Drug Design 163
8.5 Fluorescence Polarization, a Tool for High-Throughput Screening 165
8.6 AlphaScreen as a Pharmaceutical Screening Tool 167
8.7 Conclusions 170
References 171
9 Molecular Networks in Morphologically Intact Cells and Tissue–Challenge
for Biology and Drug Development 173
Walter Schubert, Manuela Friedenberger and Marcus Bode
9.1 Introduction 173
9.2 A Metaphor of the Cell 174
9.3 Mapping Molecular Networks as Patterns:
Theoretical Considerations 176
9.4 Imaging Cycler Robots 177
9.5 Formalization of Network Motifs as Geometric Objects 179
9.6 Gain of Functional Information: Perspectives for Drug Development 182
References 182
Contents
IX
III Applications 185
10 From Target to Lead Synthesis 187
Stefan Müllner, Holger Stark, Paivi Niskanen, Erich Eigenbrodt,
SybilleMazurek and Hugo Fasold
10.1 Introduction 187
10.2 Materials and Methods 190
10.2.1 Cells and Culture Conditions 190
10.2.2 In Vitro Activity Testing 190
10.2.3 Affinity Chromatography 190
10.2.4 Electrophoresis and Protein Identification 191
10.2.5 BIAcore Analysis 191
10.2.6 Synthesis of Acyl Cyanides 192
10.2.6.1 Methyl 5-cyano-5-oxopentanoate 192
10.2.6.2 Methyl 6-cyano-6-oxohexanoate 193
10.2.6.3 Methyl-5-cyano-3-methyl-5-oxopentanoate 193
10.3 Results 193
10.4 Discussion 201
References 203
11 Differential Phosphoproteome Analysis in Medical Research 209
Elke Butt and Katrin Marcus
11.1 Introduction 210
11.2 Phosphoproteomics of Human Platelets 211
11.2.1 Cortactin 213
11.2.2 Myosin Regulatory Light Chain 213
11.2.3 Protein Disulfide Isomerase 214
11.3 Identification of cAMP- and cGMP-Dependent Protein Kinase
Substrates in Human Platelets 216
11.4 Identification of a New Therapeutic Target for Anti-Inflammatory
Therapy byAnalyzing Differences in the Phosphoproteome of Wild
Type and Knock Out Mice 218
11.5 Concluding Remarks and Outlook 219
References 220
12 Biomarker Discovery in Renal Cell Carcinoma Applying Proteome-Based
Studies in Combination with Serology 223
Barbara Seliger and Roland Kellner
12.1 Introduction 224
12.1.1 Renal Cell Carcinoma 224
12.2 Rational Approaches Used for Biomarker Discovery 225
12.3 Advantages of Different Proteome-Based Technologies for the
Identification ofBiomarkers 226
Contents
X
12.4 Type of Biomarker 228
12.5 Proteome Analysis of Renal Cell Carcinoma Cell Lines and Biopsies 229
12.6 Validation of Differentially Expressed Proteins 234
12.7 Conclusions 235
References 235
13 Studies of Drug Resistance Using Organelle Proteomics 241
Catherine Fenselau and Zongming Fu
13.1 Introduction 242
13.1.1 The Clinical Problem and the Proteomics Response 242
13.2 Objectives and Experimental Design 243
13.2.1 The Cell Lines 243
13.2.2 Organelle Isolation 244
13.2.2.1 Criteria for Isolation 244
13.2.2.2 Plasma Membrane Isolation 245
13.2.3 Protein Fractionation and Identification 247
13.2.4 Quantitative Comparisons of Protein Abundances 249
13.3 Changes in Plasma Membrane and Nuclear Proteins in MCF-7 Cells
Resistant toMitoxantrone 252
References 254
14 Clinical Neuroproteomics of Human Body Fluids: CSF and Blood Assays
forEarly and Differential Diagnosis of Dementia 259
Jens Wiltfang and Piotr Lewczuk
14.1 Introduction 259
14.2 Neurochemical Markers of Alzheimer’s Disease 260
14.2.1 β-Amyloid Precursor Protein (β-APP):
Metabolismand ImpactonADDiagnosis 261
14.2.2 Tau Protein and its Phosphorylated Forms 263
14.2.2.1 Hyperphosphorylation of Tau as a Pathological Event 264
14.2.2.2 Phosphorylated Tau in CSF as a Biomarker of Alzheimer’s Disease 265
14.2.3 Apolipoprotein E (ApoE) Genotype 266
14.2.4 Other Possible Factors 267
14.2.5 Combined Analysis of CSF Parameters 267
14.2.6 Perspectives: Novel Techniques to Search for AD Biomarkers –
Mass Spectrometry (MS), Differential Gel Electrophoresis (DIGE), and
Multiplexing 270
14.3 Conclusions 271
References 272
15 Proteomics in Alzheimer’s Disease 279
Michael Fountoulakis, Sophia Kossida and Gert Lubec
15.1 Introduction 279
Contents
XI
15.2 Proteomic Analysis 280
15.2.1 Sample Preparation 280
15.2.2 Two-Dimensional Electrophoresis 282
15.2.3 Protein Quantification 282
15.2.4 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass
Spectroscopy 283
15.3 Proteins with Deranged Levels and Modifications in AD 284
15.3.1 Synaptosomal Proteins 290
15.3.2 Guidance Proteins 291
15.3.3 Signal Transduction Proteins 291
15.3.4 Oxidized Proteins 292
15.3.5 Heat Shock Proteins 293
15.3.6 Proteins Enriched in Amyloid Plaques 293
15.4 Limitations 294
References 294
16 Cardiac Proteomics 299
Emma McGregor and Michael J. Dunn
16.1 Heart Proteomics 300
16.1.1 Heart 2-D Protein Databases 300
16.1.2 Dilated Cardiomyopathy 300
16.1.3 Animal Models of Heart Disease 301
16.1.4 Subproteomics of the Heart 302
16.1.4.1 Mitochondria 302
16.1.4.2 PKC Signal Transduction Pathways 304
16.1.5 Proteomics of Cultured Cardiac Myocytes 305
16.1.6 Proteomic Characterization of Cardiac Antigens in Heart Disease and
Transplantation 306
16.1.7 Markers of Acute Allograft Rejection 307
16.2 Vessel Proteomics 307
16.2.1 Proteomics of Intact Vessels 307
16.2.2 Proteomics of Isolated Vessel Cells 308
16.2.3 Laser Capture Microdissection 311
16.3 Concluding Remarks 312
References 312
IV To the Market 319
17 Innovation Processes 321
Sven Rüger
17.1 Introduction 321
17.2 Innovation Process Criteria 322
17.3 The Concept 322
17.4 Market Attractiveness 323
Contents
XII
17.5 Competitive Market Position 323
17.6 Competitive Technology Position 324
17.7 Strengthen the Fit 325
17.8 Reward 325
17.9 Risk 325
17.10 Innovation Process Deliverables for each Stage 326
17.11 Stage Gate-Like Process 326
17.11.1 Designation as an Evaluation Project (EvP) 327
17.11.2 Advancement to Exploratory Project (EP) 329
17.11.3 For Advancement to Progressed Project (PP) 331
17.11.4 Advancement to Market Preparation 334
17.12 Conclusion 335
Subject Index 337
1