首先,详细介绍了本论文的研究现状、研究意义以及智能车主动避撞技术的发展现
状,详细介绍了当前智能车辆路径规划和轨迹跟踪控制技术的相关方法以及各种方法的长处与不足。本文结合 PID 控制和模糊控制两种控制算法的优势,确定了用模糊自适应PID 轨迹跟踪控制器作为避撞模型的轨迹跟踪层,以克服单一的 PID 控制器参数不能在线调节的弊端。为避免出现极限情况下跟踪不好的问题,确定了 MPC 控制算法在轨迹跟踪层的应用。为解决智能车辆在动态环境下轨迹规划问题,论文选用了模型预测轨迹重规划算法作为轨迹规划层。
其次,以前轮转向的智能车为研究对象,建立了车辆坐标系,建立了二自由度的智
能车辆动力学方程。在研究轨迹跟踪问题的过程中,详细介绍了模糊 PID 轨迹跟踪控制器和 MPC 轨迹跟踪控制器的建立过程,并在 Matlab/Simulink 环境中分别对其跟踪效果进行仿真。结果显示在车速为 18km/h、36km/h 和 72km/h 时,对于不同的跟踪轨迹(直线和双移线),两者都有较理想的跟踪效果。然后,论文详细介绍了模型预测理论在动态环境中轨迹重规划的应用,并据此建立了智能车主动避撞模型的轨迹规划器。为满足实时性和鲁棒性的需要,论文轨迹规划层采用了计算量较少的点质量车辆模型。 最后,论文利用前面建立的模糊 PID 和 MPC 控制器分别作为轨迹跟踪层,利用模型预测动态轨迹规划器作为轨迹规划层,搭建了轨迹规划+轨迹跟踪的双层控制器作为智能车主动转向避撞模型。最后在 Matlab/Simulink 环境中分别对其避撞效果进行仿真,结果显示,当车速为 18km/h、36km/h 时,该模型有较好的避撞效果,并在避撞之后能够及时跟踪原来的轨迹行驶;但当车速为 72km/h 时,由于车速较高,障碍物信息过早的加入会导致智能车较早进行轨迹重规划并偏离原来轨迹,但整体上来说该避撞模型都实现了避撞的设计目标。论文选用的轨迹规划和跟踪算法都能满足智能车主动避撞技术的要求。