内容概要:本文详细介绍了基于FPGA的FOC(磁场定向控制)电流环实现,涵盖PI控制器和SVPWM算法的具体实现。首先,整体架构由ADC采样、PI控制器、SVPWM生成组成,通过Verilog语言编写,实现了高效的电流控制。其次,PI控制器负责电流偏差的比例和积分运算,确保精确调节电机电流。SVPWM算法则将PI控制器输出转换为逆变器的开关信号,采用二电平算法并通过查表法优化资源占用。此外,文章还讨论了ADC采样(AD7928)、位置反馈(AS5600)和串口通信的硬件接口设计,提供了Simulink模型和RTL图辅助理解和验证系统性能。 适合人群:具备一定FPGA开发经验,熟悉Verilog编程,从事电机控制系统设计的研发人员。 使用场景及目标:适用于无刷直流电机(BLDC)和永磁同步电机(PMSM)的高精度控制应用,旨在提高电机控制效率和响应速度。通过学习本文,读者可以掌握基于FPGA的FOC电流环实现方法,优化电机控制系统的性能。 其他说明:文中提供的代码和模型均为手动编写,确保了代码的可理解性和可维护性。实测表明,该方案能在20kHz中断频率下实现快速响应,适用于1kW级别伺服电机的控制。
2025-12-20 23:27:50 427KB FPGA Verilog SVPWM ADC采样
1
自动化灌溉系统 这是一个自动应用于水厂的开源应用程序。 到目前为止,几乎没有免费的专业软件和说明可用于构建可扩展,准确且最重要的是耐用的DYI灌溉。 该应用程序不仅在外观上看起来不错,而且对数据也很热爱。 最重要的是,它是一种根据工厂的确切需求定制传感器的工具。 这是大多数直接测量土壤湿度的灌溉系统失败的原因,因为每种土壤和植物都不相同,因此手动校准以及可能需要一段时间后重新校准至关重要。 该应用程序包含以下功能: 监视和显示分钟,小时,天,周和月级别的时间序列数据 设置应触发自动浇水的水位。 设置灌溉期间泵的工作时间 通过按钮手动激活灌溉 在不同的传感器配置文件之间切换 在明暗主题之间切换 应用深色主题 以灯光主题 目录 零件清单 名称 数量 描述 1-n 泵,管,容量传感器和继电器 1-n Wifi模块,用于读取容量并将其发送到后端(Raspi) 1个 运行整个软件并触发泵 1个 这是树莓派的数据存储器 1-n 根据raspi的信号关闭或打开泵电路 1-n 要测量土壤湿度。 电容式传感器不会溶解。 切勿使用电子湿度传感器,因为它们会很快磨损 1-n 从理论上讲,可
2025-12-08 20:44:26 1.15MB react nodejs docker raspberry-pi
1
### Raspberry Pi 3 内存芯片资料:EDB8132B4PB-8D-F #### 一、概述 本文将详细介绍应用于Raspberry Pi 3B的内存芯片——EDB8132B4PB-8D-F的相关规格与特性。这款内存芯片为嵌入式低功耗双倍数据速率2(Embedded Low Power Double Data Rate 2, LPDDR2)SDRAM,由美光科技生产。该芯片具有多种特性,旨在满足高性能计算设备对于内存性能及能效的需求。 #### 二、主要特性 1. **超低电压供电**:支持极低的核心与I/O电源供应,有助于降低整体功耗。 2. **频率范围**:工作频率可达400MHz,数据传输速率为800Mb/s/pin,适用于高速数据处理场景。 3. **4n Prefetch DDR架构**:采用先进的4n预取技术,提高数据吞吐量的同时保持较低的功耗。 4. **8个内部存储库**:提供并发操作能力,有效提升数据访问速度。 5. **命令/地址输入复用**:通过命令时钟(CK_t/CK_c)的每个上升沿和下降沿接收命令,实现双倍数据率传输。 6. **双向/差分数据选通信号**:每字节数据配备一个双向差分数据选通信号(DQS_t/DQS_c),以确保数据传输的准确性。 7. **可编程读/写延迟**:通过编程设置读写延迟时间(RL/WL),优化数据传输效率。 8. **突发长度控制**:支持4、8和16位的突发长度控制,灵活适应不同的数据传输需求。 9. **按库刷新功能**:每个存储库独立刷新,允许在刷新过程中执行其他操作,提高并发性。 10. **自动温度补偿自刷新**:内置温度传感器自动调节刷新周期,确保数据完整性不受温度变化的影响。 11. **部分阵列自刷新**:在低活动状态时节省电力消耗。 12. **深度省电模式**:进一步降低功耗,延长电池续航能力。 13. **可选择输出驱动强度**:根据系统需求调整输出电流,优化信号质量。 14. **时钟停止能力**:允许在不使用时关闭时钟信号,减少不必要的功耗。 15. **无铅包装**:符合RoHS标准,环保且不含卤素。 #### 三、选项配置 - **密度/片选**:8Gb/2-CS 双晶片配置。 - **组织方式**:x32,即32位数据宽度。 - **供电电压**:VDD1 = 1.8V,VDD2 = VDDQ = 1.2V。 - **修订版**:版本4。 - **封装类型**:12mm x 12mm FBGA绿色封装,168球,最大高度0.8mm。 - **时序参数**:循环时间2.5ns,读取延迟RL=6。 - **工作温度范围**:从-30°C到+85°C。 #### 四、关键时序参数 - **速度等级**:8D。 - **时钟频率**:400MHz。 - **数据传输率**:800Mb/s/pin。 - **读取延迟**:RL=6。 - **写入延迟**:WL=3。 #### 五、配置寻址 - **架构**:256Mega x 32。 - **单个封装的密度**:8Gb。 - **每封装中的晶片数**:2。 - **每通道的排数**:1。 - **每排中的晶片数**:2。 - **配置**:32Mega x 16 x 8 banks x 2。 - **行地址**:16K A[13:0]。 - **列地址**:2K A[10:0]。 #### 六、部件编号描述 - **部件编号**:EDB8132B4PB-8D-F-R / EDB8132B4PB-8D-F-D。 - **总密度**:8Gb。 - **配置**:256Meg x 32。 - **排数**:1。 - **通道数**:1。 - **封装尺寸**:12mm x 12mm (最大高度0.80mm)。 - **球间距**:0.50mm。 #### 七、总结 EDB8132B4PB-8D-F作为一款应用于Raspberry Pi 3B的内存芯片,其出色的性能和能效表现使其成为理想的选择。通过采用先进的技术与设计,如4n Prefetch DDR架构、双向/差分数据选通信号以及多种省电模式等,确保了在满足高性能需求的同时,也能够有效地控制功耗。这对于移动设备或依赖电池供电的应用来说尤为重要。此外,其广泛的配置选项也为不同应用场景提供了灵活性,使其能够适应多样化的硬件环境。
2025-12-06 15:49:07 1.87MB
1
花园- 使用Raspberry Pi的自动浇水和园艺系统 设计非常简单,以小容器园艺为目标。 计划对以下硬件的支持: 4个浇水/园艺区 4个基于MCP23017的GPIO继电器 4个Vegetronix VH400湿度传感器(使用ADS1115 I2C ADC) 1个TSL2561 I2C光传感器 5个单线达拉斯温度传感器 1个DS1307实时时钟 CSV数据记录 使用Flask / matplotlib / pandas绘制数据图表 保持基础架构简单 浇水区的视频在这里: :
2025-12-03 21:56:15 52KB Python
1
【植物监控器:Raspberry Pi实现的智能监测与灌溉系统】 在现代智能家居和自动化领域,Raspberry Pi(树莓派)作为一个小型、低成本且功能强大的微型计算机,被广泛用于各种创新项目,包括植物监控和自动灌溉系统。"植物监控器"项目就是这样一个例子,它利用Raspberry Pi的潜力,通过JavaScript编程语言来实现对植物生长环境的实时监测和智能管理。 我们需要了解Raspberry Pi的基本结构。Raspberry Pi是一款单板计算机,具备运行完整操作系统的能力,如Raspbian(基于Debian的Linux发行版)。在这个项目中,Raspberry Pi将作为中央处理器,收集传感器数据并执行灌溉任务。 项目的核心部分是传感器和执行器。通过连接湿度传感器、光照传感器和温度传感器,我们可以实时监测植物的生长环境。湿度传感器可以检测土壤的水分含量,光照传感器测量环境的光照强度,而温度传感器则负责监控空气温度。这些传感器的数据将被Raspberry Pi读取,并通过JavaScript进行处理。 JavaScript在这里起到了关键作用。尽管通常我们更多地将JavaScript与网页开发关联,但Node.js的出现使得JavaScript也能在服务器端运行,这为在Raspberry Pi上使用JavaScript提供了可能。Node.js是一个开放源代码、跨平台的JavaScript运行环境,可以用来执行服务器端的JavaScript代码。在这个项目中,我们可能会用到Node.js的扩展库,如`johnny-five`或`pi-gpio`,它们能帮助我们与硬件进行交互,读取传感器数据并控制执行器。 接下来,数据处理和决策制定是项目的关键。根据传感器收集到的信息,JavaScript代码会分析当前环境是否满足植物的生长需求。例如,如果土壤湿度低于预设阈值,系统将触发灌溉机制,通过继电器或其他电子元件控制水泵工作,向植物供水。同样,如果光照或温度不适宜,可能需要调整室内照明或开启/关闭空调设备。 为了远程访问和监控这个系统,我们可以搭建一个简单的Web界面。使用Express.js(一个Node.js的Web应用框架)和EJS(一个嵌入式JavaScript模板引擎),我们可以创建一个可以显示实时数据和控制灌溉功能的网页。用户只需在任何可上网的设备上打开这个页面,就能查看植物的生长环境并进行远程控制。 此外,为了记录和分析长期数据,我们可以利用MongoDB等NoSQL数据库存储传感器读数。这些数据可用于后期分析,比如识别植物的最佳生长条件,或者预测何时需要浇水。 总结来说,"植物监控器"项目利用Raspberry Pi、JavaScript和一系列传感器,构建了一个智能监测和灌溉系统,实现了对植物生长环境的实时监控和自动调节。通过这样的系统,不仅能够提升植物的生长质量,也展示了技术如何融入日常生活,为我们的园艺活动带来便利和乐趣。
2025-12-03 21:55:24 3KB JavaScript
1
内容概要:本文介绍了一种基于Matlab R2018a Simulink构建的永磁同步电机(PMSM)伺服控制仿真模型。该模型采用了三环PI控制结构,即位置环、速度环和电流环,分别采用P+前馈复合控制、抗积分饱和PI控制和普通PI控制。特别之处在于实现了三环PI参数的自整定功能,仅需输入正确电机参数即可自动调整PI参数,大大减少了调试时间和复杂度。模型还包含多个关键模块如DC直流电压源、三相逆变器、SVPWM、Clark变换、Park变换及其反变换等,所有模块均采用离散化仿真,确保仿真结果贴近实际数字控制系统。 适用人群:从事电机控制、自动化工程领域的研究人员和技术人员,特别是那些希望深入了解PMSM伺服控制系统设计与优化的人群。 使用场景及目标:适用于需要模拟和测试不同工况下PMSM伺服控制系统性能的研究项目或工业应用。目标是帮助用户快速建立高效稳定的电机控制系统,减少实验成本和时间消耗。 其他说明:文中提供了详细的算法解释以及相关文献引用,有助于进一步探索理论背景和技术细节。同时强调了模型的实际应用价值,便于后续硬件移植和产品开发。
2025-12-03 10:32:36 780KB
1
内容概要:本文详细比较了滑模控制与传统PI控制在Boost升压电路中的表现,重点探讨了两者的鲁棒性、抗扰动能力和动态响应特性。文中通过Matlab/Simulink搭建了一个典型的Boost升压电路模型,设定输入电压为18V,目标输出为36V,在负载突变的情况下进行实验。结果显示,滑模控制在抗扰动方面表现出色,能够快速稳定输出电压,而PI控制在负载突变时响应较慢,存在较大超调量。此外,文章还讨论了滑模控制中存在的抖振问题及其解决方案,以及两种控制方式在不同应用场景中的优劣。 适合人群:从事电力电子、自动控制领域的研究人员和技术人员,尤其是对Boost升压电路感兴趣的读者。 使用场景及目标:适用于希望深入了解滑模控制与PI控制在Boost升压电路中具体应用的研究人员和技术人员。目标是帮助读者理解这两种控制方式的特点,以便在实际项目中做出合适的选择。 其他说明:文章提供了详细的仿真代码和参数设置,鼓励读者亲自尝试并调整参数,从而更好地掌握滑模控制的应用技巧。
2025-11-28 13:43:55 417KB
1
内容概要:本文详细探讨了基于电压外环PI控制和内环滑膜控制的Buck变换器控制仿真的研究。文中首先介绍了Buck变换器的经典结构及其双环控制机制,即外环用于稳定电压,而内环则专注于电流控制。具体实现了输入为20V、输出为10V的Buck变换器模型,并通过MATLAB/Simulink进行了详细的仿真。文中还提供了具体的控制算法代码片段,包括PI控制器参数设置以及滑膜控制的设计细节,如滑膜面的选择和指数趋近律的应用。此外,作者强调了滑膜控制相较于传统双PI控制在抗干扰方面的优势,特别是在面对输入电压突变时的表现更为突出。最后,通过实验验证了所提出的控制方法的有效性和优越性。 适合人群:对电力电子控制系统感兴趣的科研人员和技术开发者,尤其是那些希望深入了解Buck变换器控制策略的人群。 使用场景及目标:适用于需要精确控制直流电源转换效率和稳定性的应用场景,如工业自动化设备、电动汽车充电系统等。目标在于提高系统的鲁棒性和动态响应性能。 阅读建议:建议读者亲自在MATLAB/Simulink环境中运行提供的代码并调整相关参数,以便更好地理解和掌握文中所述的技术要点。同时,可以参考提供的参考文献进一步深入研究滑模变结构控制理论。
2025-11-28 11:14:59 431KB
1
三电平PWM整流器仿真npc型整流器三相整流器。 matlab仿真 采用电压电流双闭环PI控制,参数准确。 使用PLL锁相环实现精准锁相,中点电位控制环达到直流母线侧中点电位平衡,spwm调制,直流测电压稳定跟踪给定值750V,三相功率因数计算模块,功率因数接近为1。 交流测电压有效值220V 额定输出功率15kW 直流稳定电压750V 开关频率20kHz 额定负载37.5欧姆 电感值1.8mL,性能良好 电流波形THD仅为0.86%。 三电平PWM整流器是一种电力电子设备,它通过脉冲宽度调制(PWM)技术,将交流电能转换为直流电能,并且可以实现电能的双向流动。在NPC型三电平整流器中,NPC代表中性点钳位,是一种特定的电路拓扑结构,它能够减少电压应力,并提高系统的可靠性。在进行该类型整流器的仿真时,通常采用Matlab仿真软件,它能够提供强大的计算和可视化能力,帮助设计者对电路进行分析和优化。 本仿真采用了电压电流双闭环PI(比例-积分)控制策略,这种控制策略能够有效保证整流器在各种负载条件下,都能实现稳定的直流电压输出。PI控制器的参数需要精确调整,以达到最佳的控制效果。同时,为了确保整流器输出直流电压的稳定性,通常会使用锁相环(PLL)技术来实现精确的锁相功能,确保交流输入与直流输出之间保持相位一致。 中点电位控制环是NPC型三电平整流器中特有的一个控制环节,它的作用是保证直流母线侧的中点电位平衡。由于在三电平结构中,存在一个中性点,而中性点的电位平衡对于系统正常运行至关重要。通过有效的中点电位控制,可以降低直流侧中点电位的波动,从而提高系统的稳定性和可靠性。 SPWM调制技术是实现三电平整流器精确控制的另一种关键技术。通过正弦脉宽调制(SPWM),可以将直流电压转换为频率和幅值可控的交流电压,进而控制交流侧电流的波形,使其接近正弦波形。在本仿真中,直流侧电压的稳定跟踪给定值750V,说明了SPWM调制技术在维持直流侧电压稳定性方面的有效性。 此外,三相功率因数计算模块也是本仿真中的一个重要部分。功率因数是衡量电路电能利用效率的一个重要参数,接近1的功率因数意味着电路的电能利用率很高,谐波污染小。本仿真中的功率因数接近为1,表明电路设计优良,电能传输效率高。 在具体的技术参数上,仿真中采用了交流测电压有效值220V,额定输出功率15kW的设计目标。直流稳定电压达到750V,这为后端直流负载的稳定供电提供了保障。开关频率设置为20kHz,这样的高频开关能够减小开关损耗,提高整流器的效率,同时也有助于减小电流波形的总谐波失真(THD)。THD越低,说明电流波形越接近正弦波,对电网的污染也越小。本仿真中电流波形THD仅为0.86%,表明电流波形质量非常高。 在负载方面,额定负载为37.5欧姆,电感值为1.8mH。这样的设计保证了电路在额定负载下能够稳定运行。电感值的大小直接影响到电流波形的平滑程度,合适的电感值可以有效地抑制电流的突变,减少电流冲击。仿真中电感值选择得当,说明了设计者对于电路性能的精确控制。 仿真文件名称列表中包含了多个相关文档和图像文件。例如,“三相整流器的仿真分析与优化深入探究其工作原理.doc”可能是对三相整流器工作原理及仿真优化过程的详细描述和分析。而“三电平整流器仿真型整流器三相整流器.html”可能是一个网页文件,用于展示仿真结果或提供交互式的仿真界面。图片文件则可能是仿真过程或结果的可视化截图,帮助理解电路的工作状态和性能表现。 通过Matlab软件进行三电平PWM整流器的仿真,可以深入分析其工作原理和性能表现。电压电流双闭环PI控制、PLL锁相环、中点电位控制环、SPWM调制技术等都是实现高性能整流器的关键技术。仿真结果表明,所设计的三电平PWM整流器在直流电压稳定性、功率因数、电能质量等方面都达到了很高的标准。
2025-11-26 16:13:18 919KB matlab
1
高性能三电平PWM整流器与NPC型三相整流器的Matlab仿真研究:精准控制中点电位与直流电压稳定在750V,三电平PWM整流器仿真npc型整流器三相整流器。 matlab仿真 采用电压电流双闭环PI控制,参数准确。 使用PLL锁相环实现精准锁相,中点电位控制环达到直流母线侧中点电位平衡,spwm调制,直流测电压稳定跟踪给定值750V,三相功率因数计算模块,功率因数接近为1。 交流测电压有效值220V 额定输出功率15kW 直流稳定电压750V 开关频率20kHz 额定负载37.5欧姆 电感值1.8mL,性能良好 电流波形THD仅为0.86%。 ,三电平PWM整流器; NPC型整流器; 电压电流双闭环PI控制; PLL锁相环; 中点电位控制环; SPWM调制; 直流测电压稳定跟踪; 功率因数计算模块; 交流测电压有效值; 额定输出功率; 直流稳定电压; 开关频率; 额定负载; 电感值; 电流波形THD。,基于三电平PWM技术的NPC型整流器Matlab仿真研究:高效稳定的电压电流双闭环PI控制策略
2025-11-26 16:12:15 925KB 哈希算法
1