Key Features Get into the Augmented Reality (AR) bandwagon by creating a Pokemon Go like game from scratch Use the latest Unity 5.X VR SDK and create pro-level AR games Innovate and explore the latest and most promising trend of AR gaming in the mobile gaming industry Book Description Have you been bitten by the Pokemon Go bug yet? If yes, then this is the right book for you. Location-based AR games have been around for a few years. They have struggled to gain popularity until just recently with the monumental release of Pokemon Go. Now, with the explosive popularity of the genre, novice and experienced developers alike will be rushing to publish an app that will be the next trend in mobile games. If you are keen on developing a VR game with the latest Unity 5.X toolkit, then this is the right book for you. The genre of location-based AR games introduces a new platform and technical challenges. This book will simplify those challenges and broaden the appeal of the genre to even casual novice game developers. In this book, you will go on a journey through building a fictional location-based AR game that addresses the core technical concepts such as: GIS fundamentals, mobile device GPS, mapping, map textures in Unity, mobile device camera, camera textures in Unity, accessing location-based services and several other general useful Unity tips. Rounding out, the technical material will open a discussion of further development that will present a multiplayer version of the game. At the end, you will be presented with troubleshooting techniques in case you get into trouble and need a little help. What you will learn Build a location-based AR game called Foodie Go Animate a players avatar around a map Use the mobile device's camera as a game background Implement database persistence with SQLLite4Unity3D to persist inventory items across game sessions Create basic UI elements for the game, inventory, menu, and settings Perform location and content searches against the Google Places API Enhance the game's mood by adding visual shader effects Extend the game by adding multiplayer networking and other general enhancements to the game Table of Contents Chapter 1. Getting Started Chapter 2. Mapping the Player's Location Chapter 3. Making the Avatar Chapter 4. Spawning the Catch Chapter 5. Catching the Prey in AR Chapter 6. Storing the Catch Chapter 7. Creating the AR World Chapter 8. Interacting with an AR World Chapter 9. Finishing the Game Chapter 10. Troubleshooting
2024-05-16 20:55:21 9.48MB Augmented Reality
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1
Java第二版中的自然语言处理 这是Packt发行的《 进行的代码库。 用于NLP的机器学习和神经网络模型的构建技术 这本书是关于什么的? 自然语言处理(NLP)允许您使用任何句子并识别模式,特殊名称,公司名称等。 《 Java自然语言处理》第二版教您如何在Java库的帮助下执行语言分析,同时不断从结果中获得见解。 本书涵盖以下激动人心的功能: 了解基本的NLP任务以及它们之间的关系 发现并使用可用的令牌化引擎 应用搜索技术来查找文档中的人物和事物 构建解决方案以识别句子中的词性 使用解析器提取文档元素之间的关系 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: System.out.println(tagger.tagString("AFAIK she H8 cth!")); System.out
2024-03-07 16:22:02 297KB Java
1
动手的RESTful API设计模式和最佳实践 这是Packt发布的“ 的代码存储库。 设计,开发和部署高度适应性,可扩展性和安全性的RESTful Web API 这本书是关于什么的? 本书介绍了代表性状态传输(REST)范例,该范例是一种体系结构样式,允许联网的设备通过Internet相互通信。 在本书的帮助下,您将探索面向服务的体系结构(SOA),事件驱动的体系结构(EDA)和面向资源的体系结构(ROA)的概念。 本书涵盖了为什么需要高质量的API来进行企业集成。 本书涵盖以下激动人心的功能: 探索RESTful概念,包括URI,HATEOAS和按需编码 研究无状态,分页和可发现性等核心模式 使用API​​网关优化链接微服务的端点 深入研究API身份验证,授权和API安全性实施 与服务编排一起制定复合和流程感知服务 公开用于云计算的基于RESTful协议的API 如果您觉
2024-02-18 10:22:16 304KB Java
1
使用scikit-learn掌握机器学习-第二版 这是发行的的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 本书探讨了各种机器学习模型,包括k最近邻,逻辑回归,朴素贝叶斯,k均值,决策树和人工神经网络。 它讨论了数据预处理,超参数优化和集成方法。 您将建立对文档进行分类,识别图像,检测广告等的系统。 您将学习使用scikit-learn的API从分类变量,文本和图像中提取功能; 评估模型性能; 并就如何改善模型的性能形成直觉。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy U
2024-02-17 17:49:07 2.77MB JupyterNotebook
1
scikit-学习食谱-第二版 这是出版的的代码存储库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 由于Python的简单性和灵活性,PythonSwift成为分析人员和数据科学家的首选语言,并且在Python数据空间中,scikit-learn是机器学习的明确选择。 本书包括机器学习中常见问题和不常见问题的演练和解决方案,以及如何利用scikit-learn有效执行各种机器学习任务。 第二版首先介绍了评估数据统计属性的方法,并生成了用于机器学习建模的综合数据。 在阅读本章的过程中,您会遇到一些菜谱,这些菜谱将教您实现一些技术,例如数据预处理,线性回归,逻辑回归,K-NN,朴素贝叶斯,分类,决策树,合奏等等。 此外,您将学习通过多类分类,交叉验证,模型评估来优化模型,并深入研究以scikit-learn实施深度学习。 除了涵盖模型部分,API和分类器,回归器和估计器等
2024-02-17 17:47:23 33.77MB JupyterNotebook
1
机器学习算法第二版 这是Packt发布的《 的代码库。 流行于数据科学和机器学习的算法 这本书是关于什么的? 机器学习以其强大而快速的大型数据集预测而获得了极大的普及。 但是,强大功能背后的真正力量是涉及大量统计分析的复杂算法,该算法搅动大型数据集并产生实质性见解。 本书涵盖以下激动人心的功能: 研究特征选择和特征工程过程 评估性能和误差权衡以进行线性回归 建立数据模型并使用不同类型的算法了解其工作方式 学习调整支持向量机(SVM)的参数 探索自然语言处理(NLP)和推荐系统的概念 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: from sklearn.svm import SVC from sklearn.model_selection import cross_val_score svc =
2023-12-15 16:31:18 97KB Python
1
Packt.Raspberry.Pi.for.Python.Programmers.Cookbook. 2nd 英文版 树莓派
2023-11-28 13:21:30 11.36MB Raspberry.Pi Programmers Cookbook
1
Bayesian statistics has been around for more than 250 years now. During this time it has enjoyed as much recognition and appreciation as disdain and contempt. Through the last few decades it has gained more and more attention from people in statistics and almost all other sciences, engineering, and even outside the walls of the academic world. This revival has been possible due to theoretical and computational developments. Modern Bayesian statistics is mostly computational statistics. The necessity for exible and transparent models and a more interpretation of statistical analysis has only contributed to the trend. Here, we will adopt a pragmatic approach to Bayesian statistics and we will not care too much about other statistical paradigms and their relationship to Bayesian statistics. The aim of this book is to learn about Bayesian data analysis with the help of Python. Philosophical discussions are interesting but they have already been undertaken elsewhere in a richer way than we can discuss in these pages. We will take a modeling approach to statistics, we will learn to think in terms of probabilistic models, and apply Bayes' theorem to derive the logical consequences of our models and data. The approach will also be computational; models will be coded using PyMC3—a great library for Bayesian statistics that hides most of the mathematical details and computations from the user. Bayesian methods are theoretically grounded in probability theory and hence it's no wonder that many books about Bayesian statistics are full of mathematical formulas requiring a certain level of mathematical sophistication. Learning the mathematical foundations of statistics could certainly help you build better models and gain intuition about problems, models, and results. Nevertheless, libraries, such as PyMC3 allow us to learn and do Bayesian statistics with only a modest mathematical knowledge, as you will be able to verify by yourself throughout this book.
2023-11-09 06:06:41 3.69MB Python Bayesian
1
实用的时间序列分析 这是出版的《 的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 时间序列分析使我们能够分析一段时间内的某些数据并了解数据随时间变化的模式,这本书将使您了解时间序列分析背后的逻辑并将其应用于各个领域,包括财务,业务和社交媒体。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: import os import pandas as pd %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns 您将需要Anaconda Python发行版来运行本书中的示例,并编写自己的Python程序以进行时间序列分析。 可从免费下载。 本书的代码示例是使用Jupyter Noteb
2023-10-05 22:27:33 2.94MB JupyterNotebook
1