LiteSeg语义分割的模型和源码,使用OpenCV 的Dnn进行推理
2022-05-03 17:06:32 25.94MB 语义分割 图像分割 边缘检测 opencvdnn
一、源码包中有3300张火灾识别数据集,标准完成。 二、数据集在darknet/VOCdevkit/VOC2007/JPEGImages目录下。 三、标注的xml文件在darknet/VOCdevkit/VOC2007/Annotations目录下。 四、训练自己的数据集步骤: 1、配置darkent 环境(网上教程很多,cpu、gpu均可) 2、对应目录下放置数据集和标注生成的xml文件 3、darknet根目录下执行./gen_files.py 4、darknet根目录下执行./darknet detector train cfg/voc-fire.data cfg/yolov3-voc-fire.cfg darknet53.conv.74 开始训练 (也可执行./darknet detector train cfg/voc-fire.data cfg/yolov3-tiny-fire.cfg 开始训练yolov3-tiny模型) 5、bakup下生成训练好的权重文件
利用keras深度学习框架,生成交通标志分类模型h5,转换为tensorflow的深度学习框架pb,在OpenCV中利用dnn调用pb模型并判断交通标志分类
2021-06-24 17:16:00 74.99MB 深度学习 OpenCVdnn 图像分类 keras
1
opencv实现的SSD人脸检测器,实现DNN的人脸检测,需要先下载模型文件,在OpenCV的\sources\samples\dnn\face_detector目录下,有一个download_weights.py脚本下载的模型文件,打包好了
2021-04-26 10:21:10 6.42MB opencvdnn人脸检测
1