软件开发设计:应用软件开发、系统软件开发、移动应用开发、网站开发C++、Java、python、web、C#等语言的项目开发与学习资料 硬件与设备:单片机、EDA、proteus、RTOS、包括计算机硬件、服务器、网络设备、存储设备、移动设备等 操作系统:LInux、树莓派、安卓开发、微机操作系统、网络操作系统、分布式操作系统等。此外,还有嵌入式操作系统、智能操作系统等。 网络与通信:数据传输、信号处理、网络协议、网络与通信硬件、网络安全网络与通信是一个非常广泛的领域,它涉及到计算机科学、电子工程、数学等多个学科的知识。 云计算与大数据:包括云计算平台、大数据分析、人工智能、机器学习等,云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。
2024-10-13 12:43:37 4.99MB python 爬虫 毕业设计 课程设计
1
在图像处理领域,OpenCV是一个强大的库,尤其在计算机视觉任务中被广泛应用。这个压缩包文件专注于使用OpenCV和Python进行轮廓检测,旨在帮助我们识别和处理图像中的特定对象,特别是红色和蓝色的目标。让我们详细了解一下这个主题。 我们要理解的是**二值化**。在图像处理中,二值化是一种将图像转换为黑白两色调的过程,以便更容易地分析和处理。通过设置一个阈值,图像中的像素会被分为两个类别:低于阈值的像素变为黑色,高于或等于阈值的像素变为白色。这样可以简化图像并突出目标特征。 接着是**阈值分割**,这是二值化的一个变种,它允许我们根据不同的条件来分割图像。在处理红蓝目标时,我们可以设置特定的色彩阈值,使红色和蓝色目标在图像中脱颖而出。 **轮廓检测**是图像处理中的重要步骤,OpenCV提供了`findContours`函数来实现这一功能。该函数可以找出图像中所有独立的不连续区域的边界,这对于识别和定位图像中的特定形状非常有用。在本案例中,我们可能使用它来找到红色和蓝色目标的边缘。 筛选是后续步骤,目的是从检测到的所有轮廓中选择出我们需要的目标。这通常通过比较轮廓的面积、周长、形状等特征来完成。例如,我们可以过滤掉面积过小或过大,或者形状不符合预期的对象。 **绘制和展示**是将结果可视化的重要环节。`cv2.drawContours`函数可以帮助我们在原始图像上绘制出检测到的轮廓,这不仅有助于验证算法的效果,也方便了后续的人工分析和调整。 压缩包中的`demo2.png`和`demo1.png`是示例图像,它们可能包含了红色和蓝色目标,供我们运行代码进行处理。`generate_contour.py`是主要的Python脚本,里面包含了上述提到的所有图像处理步骤。通过运行这个脚本,我们可以看到如何应用这些技术来检测和显示图像中的目标。 这个压缩包提供了一个完整的流程,从图像预处理到目标检测,再到结果展示,对于学习OpenCV和Python在图像处理上的应用,尤其是轮廓检测,是一个很好的实例。掌握这些知识后,你不仅可以识别特定颜色的目标,还能将其应用到更复杂的计算机视觉任务中,如目标跟踪、物体识别等。
2024-08-26 08:12:48 111KB 图像处理 opencv python
1
实现了通过在图像上增加或者减少控制点,通过鼠标调整控制点,可以对图像进行微变形,如果图像是人脸,如眼睛的增大或减小的调整,相当于对人脸进行了整形。算法原理见配套博客《python+opencv实现人脸微整形》
2024-08-11 20:26:17 6KB python opencv
1
在本项目中,我们将深入探讨如何使用OpenCV库在Python环境下进行人脸识别。OpenCV(开源计算机视觉库)是一个强大的图像处理和计算机视觉工具,广泛应用于各种领域,包括人脸识别。在这个项目中,我们将涵盖以下几个关键知识点: 1. **基础人脸检测**: - Haar级联分类器:OpenCV中用于人脸检测的默认方法是基于Haar特征的级联分类器,这是一种机器学习算法,通过训练大量正面和非正面人脸样本来识别人脸。 - XML文件:级联分类器的参数存储在XML文件中,如`haarcascade_frontalface_default.xml`,它包含了一系列特征级联规则。 - `cv2.CascadeClassifier()`函数:使用该函数加载级联分类器,并在图像上检测人脸。 2. **动态人脸识别**: - 实时视频流处理:利用`cv2.VideoCapture()`函数获取摄像头视频流,然后逐帧处理以实现动态人脸识别。 - 帧处理:每帧图像经过灰度化、缩放等预处理步骤,然后应用级联分类器进行人脸检测。 - 人脸框标记:检测到的人脸位置用矩形框标出,通常使用`cv2.rectangle()`函数实现。 3. **人脸对齐与特征提取**: - 人脸对齐:为了进行更高级的操作,如人脸识别或表情分析,可能需要将人脸对齐到标准位置,这通常涉及旋转和平移操作。 - 特征提取:如使用Local Binary Patterns (LBP) 或 Histogram of Oriented Gradients (HOG) 算法提取人脸特征,为后续的识别阶段提供数据。 4. **人脸识别**: - 人脸验证与识别的区别:人脸验证是判断两张人脸是否属于同一人,而人脸识别是识别出某张人脸属于哪个人。 - 人脸识别算法:可以使用Eigenfaces、Fisherfaces或最近邻算法等。这些算法将人脸特征向量与预先构建的模型进行比较,以识别身份。 - OpenCV的`cv2.face.LBPHFaceRecognizer_create()`、`cv2.face.EigenFaceRecognizer_create()`或`cv2.face.FisherFaceRecognizer_create()`函数用于创建相应的识别器模型。 5. **人脸勾画**: - 局部特征:通过检测眼睛、鼻子和嘴巴等局部特征,可以进一步增强人脸的表现力。OpenCV提供了`cv2.findContours()`和`cv2.drawContours()`函数来检测和绘制这些特征。 - 人脸属性检测:除了基本的人脸框,还可以检测眼神、笑容、性别等属性,这需要更复杂的模型,如深度学习模型Dlib或MTCNN。 6. **深度学习方法**: - 近年来,基于深度学习的人脸识别模型如VGGFace、FaceNet和ArcFace等,已经取得了显著的性能提升。这些模型通常需要大量的标注数据进行训练,并且可以实现更复杂的身份识别任务。 7. **项目实现**: - 代码结构:项目通常包含预处理模块、人脸检测模块、特征提取模块(如果适用)、识别模块以及可视化模块。 - 数据集:可能需要准备一个包含多个人的面部图像的数据集,用于训练和测试识别模型。 - 结果展示:最终结果可以通过显示带有识别信息的图像或输出识别结果到控制台来呈现。 通过本项目,你可以掌握OpenCV在Python中的基本用法,理解人脸识别的工作流程,并了解如何结合深度学习技术进行更高级的应用。实践中遇到的问题和解决策略也将加深你对计算机视觉的理解。
2024-07-20 09:41:05 7KB opencv python
1
指针式仪表倾斜校正opencv算法python代码及仪表图像(包含倾斜的和模板图像) opencv 里面的sift算法,如果想改成SURF算法直将“SIFT_create”修改成“SURF_create”即可 #SURF_create受专利保护,直接运行报错,SIFT_create可以直接跑 下面提供了两种使用SURF_create的方法 1. 卸载已有安装opencv-python: pip uninstall opencv-python 2. 安装opencv-contrib-python 3.2版本以下: pip install opencv-contrib-python==3.4.2 也可以不降低版本号,进行编译,详细流程见链接 https://blog.csdn.net/m0_50736744/article/details/129351648
2024-07-03 09:54:23 2.71MB opencv python
1
基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。 基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过
2024-06-11 09:06:51 71.93MB opencv python 目标检测 期末大作业
图像预处理:对输入的仪表图像进行灰度化预处理,以提高后续图像识别算法的准确性。 仪表区域定位:基于FLANN的匹配器进行模版匹配,将仪表在图像中的位置进行定位并提取出来。 指针识别:采用Kmeans算法把图像进行二值化分割,同时只保留内切圆部分,采用旋转虚拟直线法获取指针在表盘的角度。 读数:根据得到的指针角度通过标定的刻度、圆心数据,采用圆心角计算法读出当前仪表刻度
2024-05-28 19:03:01 4.71MB opencv python
1
opencv opencv_使用opencv+python+UI界面实现的车牌识别项目_项目实战
2024-04-26 15:07:57 22.71MB opencv python 车牌识别 UI界面
1
opencv+python机器视觉缺陷检测代码,课程代码,简单可用,记得要改图片路径,导包
2024-04-18 14:55:57 1KB opencv python
1
在这个实战项目中,我们将利用Python结合OpenCV库来实现车牌识别功能。整个过程涵盖图像预处理、车牌定位、车牌字符分割以及模板匹配识别等关键步骤,对智能交通、车辆管理等实际应用领域具有显著价值。 首先,我们需要对获取的车辆图像进行预处理,这通常包括灰度化、二值化、滤波去噪等操作,以便更好地凸显车牌区域。接着,利用OpenCV的图像处理功能,我们可以实现车牌定位。这通常涉及边缘检测、轮廓查找以及形态学操作,以准确提取出车牌区域。 在车牌定位完成后,我们需要对车牌进行字符分割。这一步的目的是将车牌中的每个字符独立提取出来,以便后续进行识别。常用的字符分割方法包括垂直投影法、滑动窗口法等。通过这些方法,我们可以将车牌图像划分为多个字符区域。 最后,我们利用模板匹配的方法对分割出的字符进行识别。通过预先准备的字符模板库,我们将每个字符区域与模板库中的字符进行匹配,从而确定字符的具体内容。经过这一过程,我们可以得到完整的车牌号码。 该项目不仅可用于车牌识别技术的学习和研究,还具有实际应用价值。通过自动识别车牌号码,我们可以实现车辆追踪、违章查询、停车场管理等功能,从而提高交通管理的
2024-04-17 12:05:09 12.37MB opencv python 源码
1