本文详细介绍了如何将YOLO11训练好的.pt权重文件转换为ONNX模型,并使用ONNX模型进行目标检测推理的全过程。文章首先讲解了导出ONNX模型的两种方法(简洁版和专业版),包括参数设置和注意事项。接着详细阐述了ONNX模型推理的完整流程,包括预处理、推理、后处理和可视化四个关键步骤。其中预处理部分涉及图像读取、尺寸调整和归一化;推理部分使用ONNXRuntime加载模型;后处理部分包括置信度过滤、边界框调整和非极大值抑制;可视化部分则展示了如何绘制检测结果。最后提供了完整的Python实现代码,涵盖了类别映射定义、参数解析和结果保存等功能,为开发者提供了从模型导出到实际应用的一站式解决方案。 在深度学习领域中,YOLO(You Only Look Once)模型因其出色的实时目标检测性能而备受瞩目。随着ONNX(Open Neural Network Exchange)的推出,跨平台和跨框架的模型部署变得更为便捷。本篇文章深入探讨了YOLO11模型从.pt权重文件到ONNX格式的转换,以及如何利用转换后的ONNX模型进行高效的推理过程。 文章介绍了两种导出YOLO11模型为ONNX格式的方法。简洁版方法适用于快速转换,但可能缺乏一些专业定制化的调整;专业版方法则提供了更多的灵活性和参数调整选项,以满足特定的需求。在转换过程中,需要注意模型的输入输出节点设置,以及如何正确处理YOLO模型特有的结构特征。此外,文章强调了转换过程中的注意事项,比如核对模型权重和结构的一致性,确保模型转换前后的性能不变。 接下来,文章详细描述了使用ONNX模型进行目标检测的完整流程。这包括了四个关键步骤:预处理、推理、后处理和可视化。在预处理环节,要处理的主要是输入图像,包括读取图像文件、调整图像尺寸到模型所需的大小,并进行归一化处理,以确保输入数据符合模型训练时的格式。推理步骤则涉及加载转换后的ONNX模型,并使用ONNX Runtime执行推理操作,得出目标的预测结果。后处理步骤对推理结果进行分析,其中包含了置信度过滤、边界框的精确调整,以及应用非极大值抑制算法去除重叠的检测框,得到最终的目标检测结果。在可视化环节,如何将检测结果绘制到原始图像上,是向用户直观展示模型检测能力的重要步骤。 文章最后提供了完整的Python代码实现,这些代码涵盖了从类别映射定义到参数解析,再到结果保存的整个过程。代码中包含了必要的函数和类,方便开发者快速理解和集成,从而能够实现从模型的导出到最终应用的无缝衔接。 在目标检测的多个环节中,YOLO模型之所以脱颖而出,得益于其简洁的设计理念和高效的检测速度。将YOLO11模型部署为ONNX格式,意味着开发者可以在不同的硬件和软件平台上运行模型,不受特定深度学习框架的限制。这样的操作不仅降低了模型部署的复杂性,还扩展了模型的应用场景,特别是在对推理速度有较高要求的实时系统中。 YOLO11的性能在众多模型中依然保持竞争力,而ONNX的介入则进一步加速了该模型的普及和应用。开发者可以利用现成的工具和代码,快速实现一个高性能的目标检测系统。这些系统的应用领域非常广泛,从安防监控到自动驾驶,从工业检测到公共安全等。可以说,本文为开发者提供了一套完整的从理论到实践,再到实际部署的解决方案,极大地促进了目标检测技术的推广和应用。
2025-11-14 11:36:11 2.45MB 目标检测 模型推理
1
【WHENet头部姿态估计代码+onnx模型】是一份基于深度学习技术的资源,用于实现头部姿态估计。头部姿态估计是计算机视觉领域中的一个重要任务,它涉及到对人头的三维姿态进行估计,通常包括头部的俯仰角、翻滚角和偏航角。在自动驾驶、监控视频分析、虚拟现实等领域有着广泛的应用。 WHENet(Weakly-supervised Head Pose Estimation Network)是一种轻量级的神经网络架构,设计用于高效且准确地估计头部姿态。该模型采用了弱监督学习方法,这意味着它可以在相对较少的标注数据上训练,降低了数据获取和处理的成本。WHENet结合了Yolov4框架,这是一种流行的实时目标检测模型,以其快速和准确而著名。通过与Yolov4的集成,WHENet能够同时进行目标检测和头部姿态估计,提高了整体系统的实用性。 ONNX(Open Neural Network Exchange)是一种开放的模型格式,支持多种深度学习框架之间的模型转换和共享。将WHENet模型转化为ONNX格式,意味着用户可以使用ONNX支持的任何框架(如TensorFlow、PyTorch或Caffe等)来运行和部署这个模型,增加了灵活性和跨平台的兼容性。 本压缩包`HeadPoseEstimation-WHENet-yolov4-onnx-main.rar`中可能包含以下内容: 1. **预训练模型**:WHENet头部姿态估计模型的ONNX文件,可以直接用于预测。 2. **源代码**:用于加载和运行ONNX模型的Python代码,可能包括数据预处理、模型推理和后处理步骤。 3. **示例数据**:可能包含一些测试图片,用于展示模型的运行效果。 4. **依赖库**:可能列出所需安装的Python库或其他依赖项,确保代码能正确执行。 5. **README文件**:详细说明如何编译、运行和使用代码的文档,包括环境配置、模型加载和结果解析。 为了使用这份资源,首先需要一个支持ONNX的开发环境,并按照README的指示安装所有必要的库。然后,你可以加载WHENet模型并使用提供的代码对输入图像进行姿态估计。输入可以是单个图像或图像序列,输出将是头部的三个姿态角度。此外,代码可能还提供了可视化功能,以图形方式显示预测结果,便于理解和调试。 这个资源为开发者提供了一套完整的头部姿态估计解决方案,结合了WHENet的高效性和ONNX的跨平台特性,对于研究者和工程师来说,是一个有价值的工具,可应用于各种实际应用场景,如智能监控、人机交互和增强现实。
2025-11-03 15:55:25 510.25MB
1
在深度学习领域,特别是机器视觉领域中,模型的部署与优化一直是研究的重点。Sam分割大模型的ONNX格式文件,即sam-vit-b-01ec64.encoder.quant.onnx和sam-vit-b-01ec64.decoder.quant.onnx,提供了一种标准化的方法,允许研究者和开发者在不同的深度学习框架之间轻松转换和部署训练好的模型。ONNX(Open Neural Network Exchange)是一个开放的格式,旨在促进人工智能模型的互操作性,确保模型可以在不同的框架和平台上无缝运行。 Sam分割模型是一种高效的图像分割模型,采用了视觉转换器(Vision Transformer, ViT)作为其核心结构。这类模型在处理图像分割任务时,能够有效提取图片中的关键特征,并将其转换为有意义的标签或轮廓,从而实现对目标的精确定位和分类。Sam分割模型在多任务学习、场景理解以及交互式分割等应用场景中显示出强大的性能。 其中,sam-vit-b-01ec64.encoder.quant.onnx文件包含了编码器部分的模型参数和结构,负责将输入的图像数据转化为高级特征表示。编码器的作用是提取图像中的主要特征,这些特征随后将被用于解码器进行进一步的分析和分割。编码器通常包含了多层的神经网络,这些网络层通过对输入数据进行多次转换和抽象,以实现信息的压缩和特征的提取。 sam-vit-b-01ec64.decoder.quant.onnx文件则包含了对应的解码器部分。解码器的作用是从编码器传递来的特征表示中重建出图像的分割掩码,即每个像素所属类别的预测结果。解码器通常需要能够处理不同尺度的信息,并且具备融合多级特征的能力,以实现最终的分割任务。解码器通常也包括多层神经网络,这些网络层会逐步细化特征表示,并生成精确的分割图。 在实际应用中,这些模型文件的量化(quantization)版本意味着模型在保持原有精度的同时,通过减少数值精度来减小模型的大小,从而加快推理速度并降低计算资源的需求。这对于在边缘设备上部署模型非常有帮助,能够提高模型的实时性和适用性。 此外,Sam分割模型作为大模型,它的成功部署和应用,不仅对研究者和开发者来说是一个巨大的成就,也为最终用户提供了强大的工具,以实现更加准确和智能的图像分析和处理。
2025-09-18 16:32:17 71.88MB 机器视觉 深度学习
1
内容概要:本文详细介绍了一个使用 C++ 结合 OpenCV 部署 YOLOv11-Pose 姿态估计 ONNX 模型的实例项目。该项目不仅能实现实时的人体姿势估计功能还让用户可根据自身需求调整各种检测指标如置信度门限。同时,文中详细介绍了项目背景、特点、改进方案、必要的注意事项及其具体的实现步骤包括了所需数据的格式和预处理流程并且提供了完整且注释详尽的样例源代码帮助新手开发者快速搭建起自己的实时姿态估计系统。 适用人群:具备一定 OpenCV 操作经验的研究员和软件开发者。 使用场景及目标:在诸如健身指导、舞蹈训练、人机交互等具体情境中自动捕捉与跟踪人体的动作与姿态。 额外说明:由于本方案使用ONNX模型格式,使得将同一模型移植到多种不同软硬件平台变得更加便利。
2025-09-08 10:07:14 36KB OpenCV YOLO
1
用于mobilesam的C++部署 MobileNet是一个轻量级的深度神经网络模型,特别设计用于移动和嵌入式设备。而ONNX是一个开放的神经网络模型交换格式,可以让不同的深度学习框架之间共享模型,实现模型的跨平台部署。MobileNet的预处理一般指将输入图像进行归一化、尺寸调整等操作,以便输入到模型中进行推理。在使用MobileNet模型时,通常需要对输入图像进行预处理,然后再将预处理后的图像输入到模型中进行推理。 运行轻量级模型: MobileNet是一种轻量级的深度神经网络模型,具有较少的参数和计算量,适用于移动和嵌入式设备。这意味着在这些资源受限的环境下,可以更高效地进行推理。 跨平台部署: 使用ONNX格式将MobileNet模型导出后,可以轻松地在不同的深度学习框架之间进行共享和部署。这使得在不同的平台上,如移动设备、服务器端等,都可以方便地使用MobileNet模型进行推理。 开放标准: ONNX是一个开放的神经网络模型交换格式,得到了业界广泛的支持。这意味着可以通过ONNX格式与其他框架(如TensorFlow、PyTorch等)进行互操作,促进了模型的开发和部署的
2025-09-07 21:55:48 22.99MB pytorch 人工智能 模型部署
1
在当前的深度学习与计算机视觉领域,模型的转换和应用是研究的热点之一。特别是在物流和快递行业中,对于包裹的自动识别和分类系统的需求日益增长。这些系统能够帮助快递公司提高分拣的效率,减少人工成本,提升客户满意度。 本博客中所提到的onnx模型,是一种开放的神经网络交换格式(Open Neural Network Exchange),它允许开发者将训练好的模型部署到不同的平台上进行推断。ONNX得到了众多深度学习框架的支持,包括PyTorch、Caffe2、Microsoft Cognitive Toolkit等,这大大方便了模型在不同环境下的迁移和应用。 文章中提到的快递实例分割任务,指的是对快递包裹进行精确的定位与识别,将其从背景中分离出来,并标注其位置和类别。这是计算机视觉中一种复杂且实用的图像分割技术。实例分割不仅仅是识别物体的类别,更重要的是区分同类别的不同实例。 在选择模型架构时,本博客聚焦于基于ultralytics训练的yolo11s-seg。YOLO(You Only Look Once)是一种流行的目标检测算法,它将目标检测任务作为单个回归问题来解决,能够实时地检测图像中的目标。YOLO模型以速度快,实时性强而著称。YOLOv3是YOLO系列中的一个里程碑版本,它在保持速度的同时显著提高了检测的准确性。 而yolo11s-seg则可能是一种针对快递包裹实例分割任务优化的YOLO版本。在这篇文章中,很可能探讨了如何将YOLOv3进行调整和训练,使其能够用于区分和定位快递包裹,以及如何将训练好的模型转换为onnx格式,以便在不同的平台上部署。 由于本段文字需要超过1000字,故仅讨论了onnx模型和yolo11s-seg在快递包裹实例分割中的应用。实际上,该话题涉及的范围更广,包括但不限于图像预处理、数据增强、损失函数的选择、训练策略、后处理等。为了实现准确的实例分割,研究者和工程师们还需要考虑这些方面,以提高模型的泛化能力和分割精度。 此外,文中提到的“package-seg”可能是一个包含处理好的快递包裹数据集,或者是执行实例分割的程序包。这个文件夹可能包含了针对特定场景或任务优化的代码和数据,用于训练和评估yolo11s-seg模型。 快递包裹实例分割是结合了目标检测与实例分割的技术挑战,onnx模型格式为模型跨平台部署提供了便利,而yolo11s-seg则是为了适应快递领域特定需求而优化的模型架构。通过本博客的探讨,我们可以了解如何将深度学习模型应用于快递物流,以实现包裹的自动化识别和分拣。
2025-08-26 13:48:26 138.79MB
1
在深入探讨OpenCV结合onnx模型进行目标检测的基础入门时,首先需要了解OpenCV和onnx各自的定义和作用。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了丰富的视觉处理函数,被广泛应用于学术研究和产业应用中,尤其在图像处理和模式识别方面表现突出。而onnx(Open Neural Network Exchange)是一个开放的格式,用于表示深度学习模型,它旨在提供一种模型的统一格式,以便不同的框架和平台之间能够实现模型的转换和部署。 在本入门指南中,我们将会接触到目标检测技术。目标检测是计算机视觉领域的一个重要任务,它涉及识别图像中的一个或多个目标,并确定它们的位置。目标检测的应用场景非常广泛,例如在自动驾驶汽车中检测行人,在零售商店中监控货架上的商品变化,在安全监控系统中识别可疑物体等。 本文中提到的示例模型是yolov8n.onnx,这是一个使用ONNX格式导出的轻量级目标检测模型,属于YOLO(You Only Look Once)系列模型中的一种。YOLO模型以其速度快和准确度高而受到业界的青睐。"n"通常表示这个版本的模型较小,适合在计算资源有限的设备上运行,比如移动设备和嵌入式设备。 在开始目标检测的示例操作之前,我们需要确保已经安装了OpenCV库和ONNX运行时。安装完成后,可以使用Python编程语言调用OpenCV库读取图片文件(如本例中的person.jpg),并加载已转换为onnx格式的目标检测模型文件。在此基础上,我们可以使用OpenCV提供的API将onnx模型集成到我们的应用中,对图像进行前向推理,从而实现目标检测。 处理过程中,系统会对输入的person.jpg图片进行分析,然后识别出图像中的人。这一过程涉及到对图像的预处理,包括但不限于图像缩放、归一化等步骤,以符合模型的输入要求。接着,模型会生成检测结果,并将检测到的目标以边界框(bounding boxes)的形式标注在原图上。为了更直观地展示结果,可以将这些标注信息绘制在原图上,并保存为result.jpg图片。 标签中的"opencv 目标检测"说明了本教程的关键词和领域,让读者一眼就能把握文档的核心内容。目标检测一直是OpenCV重点支持和广泛使用的功能,本入门指南通过一个简单示例,旨在帮助读者快速掌握如何使用OpenCV结合onnx模型进行目标检测的技能。 通过本入门指南的学习,读者不仅可以了解到目标检测技术的相关知识,而且能够亲自实践OpenCV和onnx结合使用的过程,实现自己的目标检测应用。这个过程不仅加深了对相关技术的理解,也为实际的项目开发提供了有力的技术支持。
2025-06-04 10:51:32 11.72MB opencv 目标检测
1
什么 这是在Unity应用程序中使用经过TensorFlow或ONNX训练的模型进行图像分类和对象检测的示例。 它使用-请注意,梭子鱼仍处于开发预览阶段,并且经常更改。 在我的更多详细信息。 分类结果: 检测结果: 如果您正在寻找类似的示例,但使用TensorflowSharp插件而不是梭子鱼,请参阅我 。 怎么样 您需要Unity 2019.3或更高版本。 2019.2.x版本似乎在WebCamTexture和Vulkan中存在一个错误,导致内存泄漏。 在Unity中打开项目。 从Window -> Package Maanger安装Barracuda 0.4.0-preview
2025-05-16 15:45:26 147.01MB deep-learning unity tensorflow image-classification
1
u2net.onnx模型 rembg项目使用
2025-05-10 18:14:12 167.84MB
1
模型包含yolov5l-seg,yolov5n-seg,yolov5s,yolov5s-cls,yolov6s,yolov8s,yolov8s-cls,yolov8s-obb,yolov8s-pose,yolov8s-seg,yolov8s-worldv2-person,yolov8s-worldv2-person-bus,yolov10n,yolov10s 用链接https://netron.app/ 查看onnx模型的结构和标签,用于测试,程序
2025-04-16 11:59:05 537MB
1