3.6 高级功能 3.6.1 QOS优先级支持 KSZ8795CLX为VoIP和视频会议等应用提供服务质量(QoS)优先级功能。KSZ8795CLX通过设置端口控制9寄存器 bit[1]和端口控制0寄存器bit[0]为每个端口提供1个、2个或4个优先级队列,1/2/4个队列划分如下: • [端口控制9寄存器bit[1],控制0 bit[0]] = 00:单一输出队列(默认)。 • [端口控制9寄存器bit[1],控制0 bit[0]] = 01:可将传出端口划分为2个优先级发送队列。 • [端口控制9寄存器bit[1],控制0 bit[0]] = 10:可将传出端口划分为4个优先级发送队列。 4个优先级发送队列是KSZ8795CLX中的新功能。队列3为 高优先级队列,队列0为 低优先级队列。端口控制9寄存 器bit[1]和端口控制0寄存器bit[0]分别用于使能端口1、2、3、4和5的划分发送队列。如果某个端口的发送队列未划分, 则高优先级和低优先级数据包在发送队列中具有相同的优先级。 此外,还有一个附加选项,或者始终首先发送高优先级数据包,或者通过端口控制14、15、16和17寄存器(按照 bit[6:0],默认值为8、4、2和1)针对4个优先级队列比例使用可编程加权公平队列。 选择2队列配置时,将使用寄存器130 bit[7:6] Prio_2Q[1:0]。这些位用于将 IEEE 802.1p的2位结果从寄存器128和129 或者TOS/DiffServ的2位结果从寄存器144-159(对于4个队列)映射到具有高优先级或低优先级的2队列模式中。 有关详细信息,请参见寄存器130 bit[7:6]的说明。 3.6.1.1 基于端口的优先级 对于基于端口的优先级,每个传入端口分别归类为优先级0-3的接收端口。优先级3接收端口接收的所有数据包标记为高 优先级,并将被发送到高优先级发送队列(如果已划分相应的发送队列)。端口控制0寄存器bit[4:3]用于分别使能端口 1、2、3、4和5的基于端口的优先级。 表3-12: 端口5 SW5-RMII连接 SW5-RMII MAC到MAC连接 (PHY模式) 说明 SW5-RMII MAC到PHY连接 (MAC模式) 外部MAC KSZ8795CLX SW5-RMII信号 类型 外部PHY KSZ8795CLX SW5-RMII信号 类型 REF_CLKI RXC5 时钟模式下 输出50 MHz 参考时钟 50 MHz REFCLKI5 正常模式下 输入50 MHz CRS_DV RXDV5/ CRSDV5 输出 载波监听 / 接收数据有效 CRS_DV TXEN5 输入 — — — 接收错误 RXER TXER5 输入 RXD[1:0] RXD5[1:0] 输出 接收数据位 [1:0] RXD[1:0] TXD5[1:0] 输入 TX_EN TXEN5 输入 发送数据使能 TX_EN RXDV5/ CRSDV5 输出 TXD[1:0] TXD5[1:0] 输入 发送数据位 [1:0] TXD[1:0] RXD[1:0] 输出 50 MHz REFCLKI5 正常模式下 输入50 MHz 参考时钟 REF_CLKI RXC5 时钟模式下 输出50 MHz 2016 Microchip Technology Inc. DS00002112A_CN 第33页
2024-08-15 22:50:27 3.11MB KSZ8795
1
Python是数据科学和机器学习领域广泛使用的编程语言,其丰富的库为数据分析提供了强大的支持。在Python中,matplotlib、pandas和numpy是三个非常关键的库,它们分别用于数据可视化、数据处理和数值计算。 matplotlib是Python中最常用的绘图库,它能够创建各种高质量的图表,如折线图、散点图、条形图等。在提供的代码示例中,展示了如何绘制折线图。`plt.plot()`函数用于绘制折线,通过调整`linestyle`参数可以改变线条的样式,如直线、虚线、点划线等。`plt.xticks()`和`plt.yticks()`用于设置坐标轴的刻度标签,而`plt.xlabel()`和`plt.ylabel()`则用来定义坐标轴的名称。`plt.legend()`用于添加图例,`plt.title()`设定图表的标题,`plt.grid()`则用于添加网格线。此外,`plt.savefig()`用于将图表保存到本地。 pandas是一个强大的数据处理库,它提供了DataFrame和Series两种主要的数据结构,用于存储和操作结构化数据。虽然在给出的代码中没有直接使用pandas,但在实际数据分析中,通常会用pandas来清洗、预处理数据,然后用matplotlib进行可视化。 numpy则是Python中的数值计算库,提供了高效的多维数组对象ndarray,以及大量的数学函数来处理这些数组。在进行机器学习模型训练或科学计算时,numpy数组可以极大地提高性能。虽然这段代码也没有直接使用numpy,但在数据分析中,例如数据预处理、特征工程等步骤,numpy的作用不可或缺,比如使用numpy的函数`np.random.randint()`生成随机整数序列。 matplotlib、pandas和numpy是Python中进行数据处理和可视化的三大支柱。matplotlib提供图表绘制功能,使数据结果直观呈现;pandas用于高效地组织和处理数据,方便数据清洗和分析;numpy则专注于数值计算,为复杂的数据运算提供高性能支持。掌握这三个库的基本操作,对于Python在数据分析和机器学习领域的应用至关重要。
2024-07-24 10:30:42 533KB numpy python matplotlib pandas
1
numpy库的使用 创建数组 x1 = np.array([1, 2, 3], dtype="int8") print(x1) print(x1.dtype) # 数据类型 x2 = np.array(range(1, 10), dtype="int8") print(x2) print(x2.dtype) x3 = np.arange(1, 10, 2, dtype="int8") print(x3) print(x3.dtype) 数据类型 x3 = np.arange(1, 10, 2, dtype="int8") print(x3) print(x3.dtype) # 改变数据类
2024-04-15 17:32:32 37KB numpy
1
Python中numpy库中,X,Y = np.meshgrid(x,y)最详细理解(附理解代码) 一. 导入numpy库 import numpy as np 二. 生成X,Y = np.meshgrid(x,y)并详解 N = 3 M=7 #生成两个一维矩阵 x = np.linspace(-2, 2, N) #[-2 0 2] y = np.linspace(-3, 3,M)#[-3 -2 1 0 1 2 3 ] X,Y = np.meshgrid(x,y) #成为两个二维矩阵 话不多说,我们直接看输出结果: 从X二维矩阵可以看出来:7行3列(M行N列) 每一行显示[-2 0 2]
2022-03-27 21:33:05 35KB grid id mes
1
以前用的是python3.5,今天安装matplotlib库的时候提示python版本必须3.6以上,无奈之下,就直接重新安装了python3.8.2及部分常用的python第三方库,想到当初我在初次安装时查找了各种资料,于是想把我关于这方面知道的最简单的安装通用公式总结一下,送给在这方面正在迷茫的朋友们。 目录 了解你的电脑及python版本 若下载的是WHL文件 若下载的是压缩文件 特例 了解你的电脑及python版本 首先,要对我们的电脑有一些了解,最主要是电脑系统类型以及你所安装的python版本 以我的电脑来说,系统类型是64位操作系统(×64),python版本是3.8.2 py
2022-03-25 20:04:52 868KB imu li lib
1
对python-numpy库的详细分析介绍,内含详细的函数使用,和样例代码
2021-11-24 21:04:27 5.65MB python numpy
1
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 要想安装NumPy有两种方式,第一种是在 cmd 中安装;第二种是在 pycharm(Python IDE)中安装。 1、查看版本 我用的是第一种方式。首先查找 python 安装路径(安装路径有点乱,不要见怪)。并查看里面的版本,我的是3.8。 2、下载 NumPy 库 登录https://pypi.org/project/numpy/#files地址,找到对应python版本的NumPy库。其中cp38代表3.8版本 我对应的版
2021-11-09 16:46:26 88KB do dow IN
1
Python之Numpy库常用函数大全(含注释)
2021-10-12 08:37:35 462KB Python Numpy
1
python的numpy库手册官方文档,人工智能python必备的库
2021-10-09 10:21:46 5.07MB python air numpy
1
numpy-1.18.1 mkl-cp37-cp37m-win_amd64.whl 一个用python实现的科学计算,包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。
2021-08-14 12:48:45 69B numpy库 python 人工智能 机器学习
1