很棒的多视图聚类 最新技术(SOTA)的集合,新颖的多视图聚类方法(论文,代码和数据集) 我们期待其他参与者分享他们的论文和代码。 如果有兴趣,请联系 。 目录 重要调查文件 多视角学习论文调查 基于图的多视图聚类系统研究纸代码 多视图聚类:调查论文 多视图学习概览:最近的进展和新的挑战纸业 文件 下列方法列出了论文:图形聚类,基于NMF的聚类,共正则化,子空间聚类和多核聚类 图Clusteirng AAAI15:通过两方方格纸代码进行大规模多视图光谱聚类 IJCAI17:具有多个图形的自加权多视图聚类”论文代码 TKDE2018:一站式多视图光谱聚类纸代码 TKDE19:GMC:基于图的多视图聚类论文代码 ICDM2019:一致性遇到不一致:用于多视图聚类的统一图学习框架论文代码 多Kenrel聚类(MKC) NIPS14:用于内核k均值聚类的局部数据融合及其在癌症生物学中的
1
This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
2019-12-21 21:09:03 7.89MB multi-view  data represe
1