**Keras 数据集详解** Keras 是一个高度模块化、用户友好的深度学习库,它在 Python 中运行,可以作为 TensorFlow、Theano 和 CNTK 的后端。Keras 提供了许多内置的数据集,便于研究人员和开发者快速进行实验。本篇文章将主要探讨两个在 Keras 中常用的数据集:MNIST 和 IMDB。 **MNIST 数据集** MNIST(Modified National Institute of Standards and Technology)是手写数字识别的经典数据集,广泛用于训练和测试机器学习模型,特别是图像分类任务。该数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,对应于0到9的十个数字。在 Keras 中,可以使用 `keras.datasets.mnist.load_data()` 函数来加载 MNIST 数据集。这个函数会返回一个元组,包含训练和测试数据的图像和对应的标签。 ```python from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() ``` 数据加载后,通常需要对图像进行预处理,例如归一化(将像素值从0-255缩放到0-1之间)和展平(将二维图像转换为一维向量)。 **IMDB 数据集** IMDB 数据集是另一个 Keras 内置的数据集,用于情感分析任务,即判断电影评论是否正面。该数据集包含了50,000条电影评论,其中25,000条用于训练,25,000条用于测试。每条评论都被标记为正面(positive,1)或负面(negative,0)。数据集中的文本已经进行了预处理,包括去除HTML标签、停用词和标点符号,以及将词汇表中的单词编号。在 Keras 中,可以使用 `keras.datasets.imdb.load_data()` 函数获取 IMDB 数据集。 ```python from keras.datasets import imdb (x_train, y_train), (x_test, y_test) = imdb.load_data() ``` 这里的 `x` 是评论的词序列,而 `y` 是相应的标签。由于模型处理的是固定长度的输入,通常需要对评论进行截断或填充以达到相同的长度。 **数据加载的注意事项** 在实际使用中,`mnist.npz` 和 `imdb.npz` 文件可能是为了节省存储空间和加快加载速度而压缩的版本。在解压后,可以通过 NumPy 的 `load()` 函数读取这些 `.npz` 文件,它们包含了多个数组数据。 ```python import numpy as np data = np.load('mnist.npz') # 或者 data = np.load('imdb.npz') ``` 解压后的 `MNIST.rar` 文件可能包含原始的 MNIST 图像文件,这些文件通常以 `.gz` 格式压缩。`.gz` 文件需要先解压再处理。 Keras 提供的 MNIST 和 IMDB 数据集是深度学习入门和实验的重要资源。它们覆盖了图像识别和自然语言处理两大领域,帮助开发者快速构建和评估模型,推动AI技术的发展。
2024-07-28 16:53:11 49.75MB keras imdb.npz mnist.npz mnist数据集
1
深度学习中的MNIST数据集,已打包,内有训练和测试数据,节省大家从官网下载的时间。
2024-05-24 20:56:08 11.06MB MNIST
1
mnist t10k-images t10k-labels train-images train-labels
2024-04-23 15:36:40 11.06MB mnist t10k-images t10k-labels train-images
1
MNIST数据集matlab的mat格式版
2023-11-12 14:49:02 22.12MB matlab 数据集
1
keras 源码中下载MNIST。数据源是通过 url = https://s3.amazonaws.com/img-datasets/mnist.npz 进行下载的。访问该 url 地址被墙了,导致 MNIST 相关的案例都卡在数据下载的环节。因此给出这个数据集供大家使用!
2023-08-07 12:05:16 10.96MB mnist Keras
1
一,mnist数据集 形如上图的数字手写体就是mnist数据集。 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的。D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值。因此G和D都在不停地更新权值。以下图为例: 在v1时的G只不过是 一堆噪声,见过数据集(real images)的D肯定能判断出G所生成
2023-07-04 19:57:59 189KB c gan IS
1
mnist数据集,这里提供png格式图片,分为训练集和测试集,其中0到9分别为一个单独的文件夹
2023-04-10 12:25:09 74.33MB mnis图片
1
手写数字识别 使用Tensorflow.js,Mnist数据集,React,Redux,Redux-Saga,Babel,Webpack,样式化组件,Eslint,Prettier和Ant Design构建的数字识别。 可以在以下位置获得演示: : 。 影片 手机(iOS和Android)版本: 桌面版: 设定环境 该项目基于JavaScript环境,您需要使用Yarn或NPM安装依赖项: $ yarn install 在本地启动 $ yarn start $ Open https://localhost:9000 with your favorite browser 量产 $ yarn build 作者
2023-03-26 10:58:29 4.65MB react redux babel webpack
1
是mnist手写数字的数据集,将原数据集转换为bmp格式的图片
2023-03-15 13:50:25 12.62MB mnist
1
mnist数据集的图片格式,model.py文件为将mnist数据集转化为图片的代码,将其与mnist.pkl.gz放在同一文件夹之下运行py文件即可(python2.7版本)
2023-02-20 20:46:57 1KB mnist图片
1