内容概要:本文档详细介绍了一个利用USTC数据集并结合MediaPipe及YOLOv11算法来创建手语视频识别系统的方法。该系统的特色功能包括但不限于实时视频流的手势识别、高效数据处理流程、通过多种预处理技术和数据扩增手段提高了系统的鲁棒性和灵活性,且支持自定义识别设置,如调整信心分数门限和重叠比阈值。 适用人群:针对从事多媒体信号处理的研发团队、高校科研人员以及对手势识别技术感兴趣的工程专业人员。 使用场景及目标:用于手语视频识别的应用场景下测试或作为教育目的帮助学生学习手语翻译系统的设计理念与实践。具体目标为搭建一套能够精准识别手势且具有良好用户体验感的产品原型。 其他说明:文档提供了详尽的技术说明及相应的代码示例,涵盖了数据增强、目标检测和图形界面实现等部分的内容,并附带了完整的数据集和模型文件,利于直接导入并实验。
2025-03-16 22:28:08 40KB MediaPipe 手语识别 GUI界面
1
mediapipe-0.8.11-cp310-cp310-win_amd64.whl
2025-03-09 17:35:15 46.76MB
1
Mediapipe是一个开源框架,由谷歌开发,专用于构建跨平台的多媒体处理管道。这个框架在计算机视觉领域广泛应用,尤其在实时分析、图像处理和传感器数据融合等方面。标题提到的"Mediapipe 模型文件"是 Mediapipe 管道中不可或缺的部分,这些模型通常用于执行各种复杂的计算任务,比如人脸识别、物体检测、姿态估计等。 描述中提到,这些模型文件在某些谷歌工程中被删除,导致编译时出现缺失模型文件的错误。这可能是因为谷歌的某些更新或优化移除了这些文件,或者是因为特定版本的Mediapipe不再包含这些预训练模型。当遇到这样的问题时,开发者需要重新获取或编译缺失的模型文件,以确保Mediapipe项目能够正常运行。 Mediapipe 使用TensorFlow作为其主要的深度学习库,因此"mediapipe_tf_file"可能是指与TensorFlow相关的模型文件。TensorFlow是一种强大的机器学习库,它允许开发人员创建、训练和部署各种机器学习模型。在Mediapipe中,这些模型通常以.pb或.tflite文件格式存在,其中.pb是TensorFlow的图定义和权重,而.tflite是轻量级的模型格式,适合移动设备和嵌入式系统。 在 Mediapipe 中,模型文件的使用过程通常包括以下几个步骤: 1. **加载模型**:通过Mediapipe的API加载.pb或.tflite文件,这一步将模型的结构和权重读入内存。 2. **构建处理管道**:在Mediapipe中,模型是作为处理节点(Calculator)集成到处理管道中的。开发者需要定义输入流(如图像或传感器数据)和输出流(如检测框或特征点)。 3. **数据传递**:Mediapipe的管道架构允许数据在不同计算器间高效流动。图像或其他输入数据经过预处理后送入模型,模型的输出再进一步处理或发送到其他计算器。 4. **运行推理**:模型在接收到输入数据后进行推理,计算出预期的结果,如检测到的人脸、物体或手势。 5. **结果处理**:Mediapipe将模型的输出转换为可读格式,如显示在屏幕上或保存为文件。 在实际应用中,Mediapipe模型文件的管理和使用需要考虑以下几点: - **模型的兼容性**:确保模型文件与Mediapipe版本、TensorFlow版本以及目标平台(如Android、iOS或桌面)兼容。 - **模型优化**:针对特定硬件(如GPU、CPU或TPU)对模型进行优化,以提高推理速度和降低资源消耗。 - **模型更新**:随着Mediapipe的更新,可能需要定期检查并更新模型文件,以利用最新的技术进步。 - **模型训练**:如果预训练模型不能满足特定需求,可以使用TensorFlow进行模型训练,然后将自定义模型整合到Mediapipe中。 "Mediapipe 模型文件"是实现Mediapipe管道功能的关键组件,它们基于TensorFlow进行视觉识别任务。当编译过程中出现模型文件缺失的情况,需要重新获取或重建这些模型,以确保项目的顺利进行。同时,理解和管理这些模型文件对于有效地利用Mediapipe解决计算机视觉问题至关重要。
2024-07-04 15:24:41 54.34MB google mediapipe 模型文件
1
mediapipe-0.9.0.1-cp37-cp37m-win_amd64.whl.zip
2024-06-16 16:09:25 47.23MB
AI手势识别控制键盘python代码,用到的是python库如下
2024-04-24 13:34:59 6KB python 手势识别 mediapipe
1
基于mediapipe的动作捕捉和Unity的球棍模型同步
2023-06-02 19:41:27 156.06MB mediapipe 动作捕捉 unity 模型同步
1
备注: 1、安装时。如果遇到not support。可以自己pip debug --verbose 查看支持的格式。修改文件名即可
2023-05-06 23:57:08 93.25MB mediapipe
1
Unity-MediaPipeJs-SendMessage-WebGL-样本 该示例在浏览器上运行MediaPipe,并通过链接JavaScript→Unity WebGL显示推断结果。 演示版 操作检查页面如下。 要求(统一) Unity 2021.1.0b6或更高版本 参考 JavaScript方法: 如何更改HTML模板: 作者 高桥和仁( ) 执照 Apache-2.0许可下的Unity-MediaPipeJs-SendMessage-WebGL-Sampleis。
2023-04-13 10:59:21 19.5MB webgl unity mediapipe JavaScript
1
使用Mediapipe检测人脸关键点,结合opencv实现人脸特效
2023-03-09 19:16:16 7.38MB opencv mediapipe
1
MediaPipe是一个主要用于构建音频、视频或任何时间序列数据的框架。在 MediaPipe 框架的帮助下,我们可以为不同的媒体处理功能构建管道。MediaPipe 使用单次手掌检测模型,一旦完成,它会对检测到的手部区域中的 21 个 3D 手掌坐标执行精确的关键点定位。 MediaPipe 管道使用多个模型,例如,从完整图像返回定向手边界框的手掌检测模型。裁剪后的图像区域被馈送到由手掌检测器定义的手部标志模型,并返回高保真 3D 手部关键点。 MediaPipe为我们日常使用的革命性产品和服务提供动力。与资源消耗型的机器学习框架不同,MediaPipe只需要最少的资源。它是如此微小和高效,甚至嵌入式物联网设备都可以运行它。2019年,MediaPipe公开发布后,为研究人员和开发人员开辟了一个全新的机会世界。
2023-02-25 20:53:49 47.48MB python 第三方库
1