Currently, the Matlab Toolbox for Dimensionality Reduction contains the following techniques:
Principal Component Analysis (PCA)
Probabilistic PCA
Factor Analysis (FA)
Sammon mapping
Linear Discriminant Analysis (LDA)
Multidimensional scaling (MDS)
Isomap
Landmark Isomap
Local Linear Embedding (LLE)
Laplacian Eigenmaps
Hessian LLE
Local Tangent Space Alignment (LTSA)
Conformal Eigenmaps (extension of LLE)
Maximum Variance Unfolding (extension of LLE)
Landmark MVU