内容概要:本文深入探讨了自动驾驶领域的Lattice规划算法,重点讲解了轨迹采样的方法、轨迹评估的标准以及碰撞检测的技术细节。文中不仅提供了详细的理论解释,还给出了Matlab和C++两种不同编程语言的具体代码实现,便于读者理解和实践。此外,文章还介绍了如何利用Qt5.15进行可视化操作,并新增了优化绘图、轨迹预测模块和支持自定义场景加载等功能,进一步增强了算法的应用性和灵活性。 适用人群:对自动驾驶技术感兴趣的科研人员、工程师以及有一定编程基础的学习者。 使用场景及目标:适用于研究和开发自动驾驶系统的人群,旨在帮助他们掌握Lattice规划算法的核心原理和技术实现,提高实际项目中的应用能力。 其他说明:文章提供的代码可以在Visual Studio 2019环境下编译运行,支持通过MAT文件加载不同的测试场景,有助于快速验证算法的有效性并进行改进。
2026-01-25 17:03:35 844KB
1
地震叠前三参数反演算法的实践:纵波速度、横波速度与密度参数反演及其应用研究与对比实验——附Matlab源代码及详细注释。,"深度解析:地震叠前三参数反演算法实现与对比实验,纵波横波密度参数反演及Matlab代码详解",实现地震叠前三参数反演算法 纵波速度 横波速度 密度参数反演 应用研究及对比实验 matlab源代码 代码有详细注释,完美运行 ,地震叠前三参数反演; 纵波速度反演; 横波速度反演; 密度参数反演; 应用研究对比实验; MATLAB源代码; 代码注释。,"地震叠前三参数反演算法实现与对比实验研究(MATLAB详解版)"
2026-01-22 21:35:26 233KB sass
1
内容概要:本文介绍了一种基于A*算法优化的往返式全覆盖路径规划改进方案,并提供了详细的MATLAB实现代码。文中首先解释了传统往返式路径规划存在的问题,如易陷入死角和无法有效避障。为解决这些问题,作者提出了一种结合A*算法的方法,在遇到死角时能够自动找到最近的未覆盖节点并继续完成全图覆盖。此外,还详细介绍了启发式函数的设计思路,使得路径更加偏向于未探索区域,从而提高覆盖率并减少重复路径。最终通过仿真实验展示了改进后的路径规划效果。 适合人群:对路径规划算法感兴趣的科研人员、自动化设备开发者、机器人爱好者。 使用场景及目标:适用于需要高效全覆盖路径规划的应用场景,如扫地机器人的清洁路径规划、无人机的巡检路径规划等。目标是提高路径规划效率,避免死角和障碍物,确保全面覆盖。 其他说明:本文不仅提供理论分析,还包括完整的MATLAB代码实现,便于读者理解和实际操作。
2026-01-11 19:31:50 1.07MB
1
matlab整体代码缩进纳米压痕_数据处理 Nanotest Vantage(纳米压痕机)输出深度/载荷数据由该脚本处理。 计算包含在 .xlsx 文件中的所有结果的平均值,并生成最终的深度/载荷图。 用户必须通过在 SESG6034_Q1.m 文件的第 44 行添加列详细信息来识别和排除任何错误结果。 注意:有关代码和输出图的详细说明,请参阅 PDF(在 Matlab 文件夹中)。 整体图 下图显示了基于输入数据的所有 10 个压痕深度/载荷图。 粗蓝图显示了平均曲线(不包括两条异常曲线)。 每个深度/载荷曲线数据(不包括两个异常图)用于计算各自的硬度和 YM 结果。 然后将这些结果平均以确定材料特性的最佳估计值。 下图显示了每条曲线的线性卸载阶段的最佳拟合线(有关更多详细信息,请参阅此处的 Oliver & Pharr 方法)。 此脚本通过查找截取数据点数量最多的区域自动推断直线应放置的位置。 附加脚本 此 repo (SESG6007_CW1.m) 中包含一个附加脚本。 在这里,施加到轴承上的最大允许剪切力是根据硬度、杨氏模量等输入参数计算的。
2026-01-07 17:06:01 873KB 系统开源
1
本资源是自相关函数BT法估计功率谱的MATLAB详细代码,包含两个文件,一个是产生实随机信号的函数,另外一个是BT法估计PSD的脚步。 仿真条件设置为有3个正弦波加一个噪声,然后去估计功率谱。 代码中参数设置放置在最前面,包含样本数,延时数、FFT变换的点数,噪声功率,信号的归一化频率、信噪比等参数。 修改任何一个参数,仿真结果就会跟着改变,超级方便,只需修改参数,就可以观察不同参数下的功率谱估计效果。 代码绘制了两种延时数下的功率谱估计效果图,这两个图的横纵坐标均有标签,物理意义明确,可以观察分辨率对正确估计出信号个数的影响。 本资源中所有的代码关键处包含文字注释,编写的代码逻辑清晰,方便各位小伙伴理解、阅读、学习。 下载资源了的小伙伴有疑惑的可以私信我一起解决你的问题。 学习该资源,可以学透自相关函数BT法估计功率谱知识。
2025-12-08 11:44:09 2KB MATLAB 功率谱估计 自相关函数
1
基于MATLAB的无迹卡尔曼滤波算法参数辨识完整代码实现,MATLAB中完整可运行的无迹卡尔曼滤波参数辨识代码解析与实现,无迹卡尔曼滤波参数辨识MATLAB完整代码可运行 ,无迹卡尔曼滤波; 参数辨识; MATLAB完整代码; 可运行,无迹卡尔曼滤波参数辨识代码MATLAB 在当前的控制系统和信号处理领域,卡尔曼滤波器作为一种有效的递归滤波器被广泛研究和应用。无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)是卡尔曼滤波技术的一个重要分支,其核心思想是利用一组精心挑选的采样点(Sigma点)来近似系统的非线性特性,从而在不损失精度的情况下更准确地描述系统状态的转移。无迹卡尔曼滤波器特别适合于处理非线性系统的状态估计问题。 本文档“无迹卡尔曼滤波参数辨识的完整代码实现”旨在提供一个在MATLAB环境下完整的、可运行的无迹卡尔曼滤波算法实现示例。文档中详细解析了无迹卡尔曼滤波的工作原理,包括其初始化、预测、更新、状态估计和协方差更新等关键步骤。读者通过阅读该文档能够深入理解UKF的算法结构,并能够根据具体应用场景进行代码的调整和优化,实现对自己研究或者工程问题的参数辨识。 文档中提到的“基于学习和数据驱动的无人船舶航向控制和轨迹跟踪”部分,展示了如何将无迹卡尔曼滤波应用于复杂的动态系统的控制和轨迹预测问题。无人船舶作为海洋工程中的重要组成部分,其航向控制和轨迹跟踪技术的研究对于提高船舶的自主导航能力、保障海上交通安全以及开发无人船舶技术具有重大意义。通过数据驱动的方法和无迹卡尔曼滤波算法,可以有效提高对海洋环境变化和船舶动态行为的预测准确性,进而实现对无人船舶更为精确的控制。 在实际应用中,无迹卡尔曼滤波器的参数设置对算法的性能有着直接的影响。参数辨识是优化UKF算法性能的重要步骤。通过调整相关的参数,比如过程噪声和测量噪声的协方差,可以使滤波器更好地适应实际的动态过程和测量噪声特性。参数辨识过程通常涉及到大量试验和仿真实验,以找到最佳的参数配置。 文档中还提供了一些相关的HTML文件和图片资源,这些资源有助于读者更好地理解无迹卡尔曼滤波算法以及如何在MATLAB中实现相关代码。这些图片可能包括算法流程图、系统动态示意图等,有助于可视化复杂概念和算法过程。HTML文件中可能包含了对文档结构的索引或者对特定算法部分的详细介绍,为读者提供了一个清晰的学习路径。 文档“无迹卡尔曼滤波参数辨识的完整代码实现”不仅提供了一个宝贵的无迹卡尔曼滤波算法的实现工具,而且通过丰富的示例和解释,使读者能够更加深入地理解无迹卡尔曼滤波技术,并将其应用到实际的控制系统和信号处理问题中。这种技术的掌握对于工程师和研究人员来说具有很高的实用价值,能够显著提高处理非线性动态系统的效率和精度。
2025-11-25 15:58:50 348KB
1
空间域图像增强技术主要通过直接处理图像像素来改进图像的质量,这是数字图像处理领域中重要的技术手段之一。该技术主要包括点处理和掩模处理两种方法。点处理涉及单个像素的运算,比如直方图均衡化,这是一种调整图像对比度的方法,通过扩展图像的直方图分布来使图像的对比度更佳。而掩模处理涉及使用一个模板或掩模(通常是一个子图像),根据这个掩模在图像的每个像素周围进行局部操作,典型的掩模处理方法之一是邻域平均法,它主要用于图像平滑,去除噪声。 直方图均衡化原理涉及到图像的统计特性,通过统计原图像的像素分布,再通过灰度变换函数对像素进行重新映射,使得原图的直方图分布更加均匀,从而达到增强图像对比度的效果。尽管直方图均衡化在视觉效果上有很大提升,但均衡化后的直方图并不一定完全均匀分布,原因在于图像像素值和灰度级是离散的,且均衡化处理时可能会造成灰度级的合并。 邻域平均法是图像平滑的一种常用技术,其基本思想是用像素及其邻域内像素的平均值来替换该像素的值。这种方法可以有效地去除图像的随机噪声,但同时也可能使图像边缘变得模糊。为了克服这一缺点,引入了加门限法,这种改进方法通过判断邻域像素值与中心像素值之间的差异,并设置一个阈值,只有当差异小于这个阈值时才进行平均处理,从而可以更好地保留图像的边缘信息。 在实验中,使用了MATLAB这一强大的科学计算工具来实现上述算法。MATLAB内置了各种函数,如“histeq”用于直方图均衡化处理,而“imhist”则用于显示图像的直方图。除了内置函数,MATLAB也支持用户自定义程序,通过编写相应代码来实现更复杂的图像处理功能。 通过本实验的学习与实践,可以深刻理解空间域图像增强的原理,掌握直方图均衡化和邻域平均法等常用图像处理技术,并通过编写和运行MATLAB程序来加深对理论知识的理解和应用能力。 实验分析部分,通过对原图像的直方图均衡化处理,可以观察到处理前后的图像及其直方图变化,从视觉效果上比较图像的亮度、对比度及细节信息的增强。此外,通过在图像中加入高斯噪声,再进行4-邻域平均平滑处理,可以观察到噪声消除效果及边缘的模糊和改善情况。实验结论部分则对实验结果进行了总结,解释了图像处理前后效果的差异以及产生的原因。 附件部分则包含了实验设计的结果和程序清单,提供了实验操作的具体细节和代码。这些附件是实验报告的重要组成部分,能够让读者了解实验的具体操作步骤,也为其他研究人员提供了参考和借鉴的可能。 本实验报告通过理论学习和MATLAB编程实践,深入探讨了空间域图像增强技术,不仅让读者学习到了基本的图像处理知识,而且通过实验加深了对相关技术的理解和应用能力。
1
**密度泛函理论(DFT)**是一种在量子力学中计算多体系统,特别是原子、分子和凝聚态物质电子结构的高效方法。该理论的基本思想是通过系统的电子密度而不是多电子波函数来描述整个系统。这大大简化了计算,使得对于大型系统也可以进行精确的模拟。 **MATLAB源代码**在科学计算领域被广泛使用,因其易读性、丰富的库支持和强大的数值计算能力而受到青睐。在DFT的实现中,MATLAB提供了良好的平台,能够处理复杂的数学运算和数据可视化。 **DFT的MATLAB实现**通常包括以下关键步骤: 1. **基函数选择**:在DFT中,电子密度是通过一组基函数来近似的。常见的基函数有高斯型原子轨道、平面波等。MATLAB代码会定义这些基函数,并用于构建系统的哈密顿量。 2. **Kohn-Sham方程**:DFT的核心是Kohn-Sham方程,它是一组非线性薛定谔方程,用来求解系统的单电子波函数。MATLAB代码将实现求解这些方程的算法,如迭代法(如梯度下降法或共轭梯度法)。 3. **交换-相关势**:DFT中的交换-相关势是理论的关键部分,它反映了电子间的相互作用。MATLAB代码会包含预定义的交换-相关势函数,如LDA(局部密度近似)和GGA(广义梯度近似)。 4. **能量计算**:通过求解Kohn-Sham方程得到电子密度后,可以计算系统的总能量。这包括动能、势能和交换-相关能量等项。 5. **几何优化**:MATLAB代码还会包含对分子几何的优化过程,通过最小化能量找到分子的稳定构型。 6. **结果分析**:MATLAB的可视化功能可以用于展示电子密度、分子轨道图、电荷分布等结果,帮助理解计算结果。 在名为“dft-master”的压缩包中,可能包含了实现以上步骤的各种MATLAB脚本和函数,如初始化设置、矩阵操作、迭代求解、能量计算和输出结果的脚本。用户可以通过阅读和运行这些源代码,深入理解DFT的计算流程,并可能对其进行修改以适应特定的研究需求。 需要注意的是,DFT的MATLAB实现往往需要一定的编程基础和量子化学知识。理解和调试代码可能涉及到对量子力学原理的深入理解,以及对MATLAB编程的熟练掌握。对于初学者,建议先学习基本的DFT理论和MATLAB基础,再逐步尝试理解并使用这些源代码。
2025-11-03 16:46:18 34KB 系统开源
1
传统感应电模型将转子侧导条等效为三相,这种等效只适用于电机无内部故障的情形下使用。如果电机发生匝间短路、转子断条等内部故障,则需要建立多回路模型对电机暂态过程进行仿真。本人研究生,在学习期间写了这个感应电机发生1根转子断条故障的多回路仿真模型,并用m语言实现。可能研究感应电机故障的学生会用到,在此分享给大家!
2025-10-30 14:04:14 3KB matlab
1
matlab改变代码颜色CNNF 演示代码“学习有效的密集匹配的新功能的原理” 内容 此演示代码包包括6个不同的部分。 “提取器”:特征提取器,为演示,我们提供16通道立体声和光学快速模型。 (其余内容,包括培训代码,将在以后发布。) “ PMBP原始”:用于立体和光流的PMBP [3]连续密集算法。 如果将“ weight_pw”值设置为零,则还可以产生PatchMatch [2]算法的结果。 简而言之,该软件包提供了4种算法(PMBP立体声,PMBP光学流,PatchMatch立体声,PatchMatch流)。 该软件包由[2]的作者编写。 “ PMBP改进”:通过实现我们的匹配功能,该包是从“ PMBP原始”中修改而来的。 4种匹配算法与上述相对应。 “ CostFilter-original”:这是用于立体匹配和光流的原始costvolume [1]方法(基于粒子)。 “ CostFilter-improved”:这是实施了我们的功能方案的改进的costfilter。 “工具:”此软件包提供了一些有用的matlab工具来更改数据格式(例如,将“ flo”更改为“ int16 p
2025-10-29 21:23:01 7.54MB 系统开源
1