最速下降法问题及matlab代码
2021-09-08 09:12:14 19KB matlab最速下降法
1
梯度下降法又被称为最速下降法(Steepest descend method),其理论基础是梯度的概念。梯度与方向导数的关系为:梯度的方向与取得最大方向导数值的方向一致,而梯度的模就是函数在该点的方向导数的最大值。梯度下降算法事实上是求多维函数的在某一点收敛的极小值,可以用这个算法迭代出在哪个点收敛,也是求最小二乘问题的一种方法。先在脑海中想象一下,你站在一座山上,怎么找到最快下山的方法,这时你当然会朝着最陡峭的方向前进,到达一个点后,再次朝着陡峭的方向下山,从而循环这些步骤,到达山脚。
2021-06-14 18:02:16 1KB matlab 最速下降法
1
一个用matlab编写的最速下降法,包括进退法,黄金分割法等一维搜索算法
2021-05-11 13:53:03 2KB matlab,最优化
1
matlab编写的最速下降法,十分详细 function x=fsxsteep(f,e,a,b) % fsxsteep函数 最速下降法 % x=fsxsteep(f,e,a,b)为输入函数 f为函数 e为允许误差 (a,b)为初始点;
2019-12-21 20:05:11 210KB matlab 最速下降法
1
我的思路是这样的: 最速下降法能找出全局最优点,但在接近最优点的区域内就会陷入“齿型”迭代中,使其每进行一步迭代都要花掉非常久的时间,这样长久的等待是无法忍受的,不信你就在我那个程序的第一步迭代中把精度取得很小如:0.000000001等,其实我等过一个钟都没有什么结果出来。 再者我们考究一下 牛顿迭代法求最优问题,牛顿法相对最速下降法的速度就快得多了,而且还有一个好处就是能高度逼近最优值,而不会出现死等待的现象。 如后面的精度,你可以取如:0.0000000000001等。 但是牛顿法也有缺点,就是要求的初始值非常严格,如果取不好,逼近的最优解将不收敛,甚至不是最优解。 就算收敛也不能保证那个结就是全局最优解,所以我们的出发点应该是:为牛顿法找到一个好的初始点,而且这个初始点应该是在全局最优点附近,这个初始点就能保证牛顿法高精度收敛到最优点,而且速度还很快。 思路概括如下: 1。用最速下降法在大范围找到一个好的初始点给牛顿法:(最速下降法在精度不是很高的情况下逼近速度也是蛮快的) 2。在最优点附近改用牛顿法,用最速下降法找到的点为牛顿法的初始点,提高逼近速度与精度。 3。这样两种方法相结合,既能提高逼近的精度,还能提高逼近的速度,而且还能保证是全局最优点。这就充分吸收各自的优点,扬长避短。得到理想的结果了。
2019-12-21 19:48:53 3KB matlab 最速下降法 牛顿法
1