人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
MATLAB图像消噪
2022-07-06 09:10:18 583KB 文档资料
程序可计算峰值信噪比、均方根误差、归一化相关性 评价去噪后的图像与原始图像的近似程度,可以用峰值信噪比来衡量。峰值信噪比( Peak Signal to Noise Ratio,PSNR)的数值越大,说明近似程度越好。峰值信噪比的定义如下: 另外一种评价两幅图近似程度的方法是均方根误差(Mean Square error,MSE)法,即 MSE值越小,表明去噪后的图像与原始图像更相似,去噪效果好。 还有一种是归一化相关性( Normalized correlation,NC)评价法,即 其值越接近1,说明去噪后的图像与理想图像越相似。
均值滤波步骤 1. 使用一个NxN的模板取出图像中部分值。 2. 将模板内的像素值求和并取平均。 3. 用平均值替换模板中心点像素值。 4. 移动模板,重复步骤1,直到模板不能再继续移动。 该程序还要求实现以下功能 1. 显示原图像、移除像素后的图像和恢复出的图像。 2. 求该去噪算法的MSE值。
2022-05-10 18:08:43 225KB matlab 图像去噪 图像处理
维纳滤波算法流程 1. 将图像分割成多个MxN块,估计像素的局部均值和方差: 2. 估计噪声功率,使用局部方差的均值作为噪声功率估计值: 3. 使用维纳法估计MxN块内所有像素的灰度值: 4. 使用估计值替换块中原像素值。 5. 合并多个图像块,得到滤波后图像。 该程序还要求实现以下功能 1. 显示原图像、移除像素后的图像和恢复出的图像。 2. 求该去噪算法的MSE值。
2022-05-10 18:08:42 225KB matlab 图像去噪 图像处理
中值滤波步骤: 1. 使用一个NxN的模板取出图像中部分值。 2. 将矩阵内的元素按升序或降序进行排序。 3. 取出排序后序列的中间值。 4. 使用中间值替换模板中心点像素值。 5. 移动模板,重复步骤1,直到模板不能再继续移动。 该程序还要求实现以下功能 1. 显示原图像、移除像素后的图像和恢复出的图像。 2. 求该去噪算法的MSE值。
2022-05-10 18:08:41 225KB matlab 图像去噪 图像处理
算法流程: 1. 指定k的值。 2. 使用一个NxN的模板取出图像中部分值。 3. 选取模板中前k个与中心点像素值最相近的像素。 4. 对步骤3中得到的k个像素值求平均。 5. 用步骤4求出的平均值替换模板中心点像素值。 6. 移动模板,重复步骤2,直到模板不能再继续移动。 此外,该程序还要求实现以下功能 1. 显示原图像、移除像素后的图像和恢复出的图像。 2. 求该去噪算法的MSE值。
2022-05-10 09:06:36 225KB matlab 图像去噪 滤波算法 MSE值计算
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:MATLAB实现图像去噪 滤波 锐化 边缘检测 源程序代码_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-20 13:04:48 18KB matlab 图像去噪 滤波 边缘检测
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:MATLAB实现图像去噪 滤波 锐化 边缘检测 源程序代码 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
MATLAB小波变换图像 去噪,带界面GUI,和评价指标。
1