光场相机目前已广泛应用于消费领域和工业应用领域,利用光场相机对目标物进行深度重建成为了一项重要的研究课题。在实际研究过程中,Lytro相机空间信息与角度信息复用于同一传感器,导致图像分辨率较低,从而使得重建效果不甚理想。为解决这一问题,提出了一种亚像素精度的光场图像深度估计方法,在频率域对子孔径图像进行多标签下的亚像素偏移,以中心视角图像为参照,建立像素匹配代价行为;使用引导滤波抑制噪声的同时保持了图像边缘;对多标签下的匹配代价行为进行优化,得到精确的深度估计结果。对目标深度图进行表面渲染、纹理映射等重建处理,得到较为精细的重建结果。实验结果表明,该算法在对复杂度较高的物体进行重建时,解决了重建模糊等问题,有较好的表现。
2021-06-21 14:22:22
1.39MB
论文研究
1