LS-SVM(Least Squares Support Vector Machine)工具箱是一款基于最小二乘法的支持向量机算法的软件包,它在机器学习和模式识别领域中有着广泛的应用。支持向量机(SVM)是一种监督学习模型,最初是通过解决最大间隔分类问题而提出的,后来发展到处理回归和异常检测等多种任务。而最小二乘法则是线性回归中的经典方法,用于寻找最佳拟合直线或超平面,以最小化预测值与实际值之间的平方误差和。 LS-SVM在传统SVM的基础上引入了最小二乘优化策略,它解决了原SVM中求解拉格朗日乘子时的计算复杂度问题。相比于原始的QP(Quadratic Programming)问题,LS-SVM将问题转化为一个更简单的线性系统,使得大规模数据集的训练成为可能。 在LS-SVM工具箱中,包含了一系列的函数和脚本,用于实现LS-SVM的训练、预测、调参以及模型评估等功能。这些文件可能包括: 1. 训练函数:用于构建LS-SVM模型的函数,通常输入是训练数据和相应的标签,输出是训练好的模型。 2. 预测函数:利用训练得到的模型对新数据进行预测,返回预测结果。 3. 调参函数:帮助用户调整模型的参数,如正则化参数C和核函数参数γ,以提高模型的泛化能力。 4. 核函数选择:LS-SVM工具箱通常会提供多种内核函数供选择,如线性核、多项式核、高斯核(RBF)等,用户可以根据数据的特性选择合适的核函数。 5. 错误分析和可视化工具:帮助用户理解模型的性能,例如,混淆矩阵、ROC曲线、决策边界可视化等。 6. 数据预处理和特征选择:可能包含用于数据标准化、归一化、特征提取或降维的函数。 使用LS-SVM工具箱进行机器学习项目时,用户需要按照以下步骤操作: 1. 数据准备:收集并整理训练和测试数据,确保数据质量,进行必要的预处理,如缺失值处理、异常值检测和去除、数据标准化等。 2. 模型训练:使用工具箱提供的训练函数,指定适当的核函数和参数,构建LS-SVM模型。 3. 模型评估:利用训练集之外的数据对模型进行验证,评估模型的性能,如准确率、精确率、召回率、F1分数等。 4. 参数调优:根据模型的评估结果,调整模型参数,如C和γ,寻找最优参数组合。 5. 模型应用:使用优化后的模型对新数据进行预测,解决实际问题。 LS-SVM工具箱因其高效、易于理解和使用的特点,成为科研人员和工程师在实际问题中广泛应用的工具。无论是对于初学者还是经验丰富的专业人士,都能从中受益,快速实现和支持向量机的各类任务。
2025-05-20 23:47:43 235KB 最小二乘法 ls_svm 支持向量机
1
现有的煤矿电机车蓄电池不能实时在线监测剩余电量,造成电机车在运行过程中出现容量不足,造成上坡困难或运行中断情况。在利用开路电压法检测蓄电池容量原理的基础上,通过LS-SVM对蓄电池放电数据进行多次检测计算,从而得到电机车蓄电池两端电压与容量的关系模型,测出蓄电池两端电压在利用关系模型即可实现电池容量的预测。通过实验表明,该方法能实时监控测量电机车蓄电池的剩余容量。
2024-05-21 15:02:46 593KB LS-SVM
1
提出了一种相空间重构与贝叶斯框架下的LS-SVM预测矿井涌水量的方法,矿井涌水量具有混沌特征,利用相空间重构,找出矿井涌水量时间序列隐藏的演化规律,作为输入参量,将贝叶斯证据框架理论用于最小二乘支持向量机模型参数的优选,运用LS-SVM将非线性问题转化为高维特征空间的线性问题进行求解。利用典型的Lorenz生成的时间序列进行仿真,选择2004年8月-2005年2月的矿井涌水量数据进行验证,结果表明该方法可行并具有较高的精度。
1
原始风速信号具有的间歇波动性特征给风电场的功率预测带来了挑战,采用集合经验模态分解(EEMD)法将原始风速信号分解为频域稳定的子序列,有效地提高了预测精度,避免了传统经验模态分解(EMD)存在的模态混叠现象。提出一种改进型果蝇优化算法(FOA),将风速子序列重构参数和最小二乘支持向量机(LS-SVM)参数作为优化目标建立风速预测模型,扩大了参数搜索范围,提高了优化收敛速度;通过风速风功率转化关系可以求得风电场的功率值。实验结果验证了所提方法相比于EMD和LS-SVM预测方法具有更高的预测精度。
1
最小二乘支持向量机MATLAB,可用于预测,并且是MATLAB程序的
2022-05-10 14:57:03 3.89MB ls-svm
1
主泵是核电厂非常重要的设备,它直接关系到整个核动力装置能否安全运行,对其进行有效的故障诊断十分必要。支持向量机(SVM)具有使用较少的训练样本达到较好分类效果、不需要故障分类的先验知识的特点,可以应用于主泵的故障诊断。为此,首先使用小波变换提取某主泵的转子质量不平衡、转子不对中、碰摩等-Z-种典型故障的故障信息,然后使用最小二乘支持向量机(LS SVM)方法对故障模型进行训练,最后对训练得到的模型进行故障诊断。诊断结果较好,从而验证了该方法的有效性。
2022-03-08 17:54:01 2.45MB 工程技术 论文
1
提出一种基于近似熵测度的变权组合预测方法. 首先, 不同于传统的预测效果评价准则, 从衡量样本序列复 杂性的角度出发, 以预测值误差序列的近似熵测度为评价效果准则, 建立变权组合预测优化模型; 然后, 在变权组合 预测权值分配问题上, 为克服常规的均值估计法和回归分析法的不足, 采用在线最小二乘支持向量机(LS-SVM) 回 归法, 实现预测点加权系数的准确预测; 最后, 通过实例表明了该方法的可行性和有效性.
1
针对现有方法在高密度场景人群密度估计不够准确的问题,提出了Gabor滤波结合最小二乘支持向量机(LS-SVM)的人群密度估计算法。首先,设计一组单独的二维Gabor滤波器应用在人群图像中以产生相应的滤波通道。然后,通过计算这些通道上灰度值的均值和方差得到特征向量。最后,采用最小二乘支持向量机分析特征向量和人数之间的关系,完成最终的密度估计。在UCSD数据集和Mall数据集上的实验显示,提出的方法实现了更快的执行时间和更好的精度,证明了基于Gabor滤波器和LS-SVM的人群密度估计算法的有效性。
1
为提高道路交通事故的预测精度以及建模速度,在分析道路交通事故影响因素基础上,提出了基于灰色关联分析的LS-SVM道路交通事故预测模型。该模型采用灰色关联分析完成影响因素的相关性分析,结合关联度值,筛选最小二乘向量机模型的输入变量,简化LS-SVM模型结构;然后运用动态改变惯性权重自适应粒子群算法(DCW-APSO)对模型参数进行优化选取;最后应用模型预测1996—2000年的综合道路交通事故死亡率,并将预测结果与其他模型进行对比分析。结果表明,相较其他预测模型,该模型具有较快的收敛速度,并能明显提高道路交通事故预测的精度。
1
发布一个Matlab关于LS-SVM回归模板及其实验数据效果
2021-11-25 21:52:07 3KB Matlab
1