LPDDR4测试板 版权所有(c) 概述 该存储库包含针对围绕Xilinx Kintex-7 FPGA构建的实验平台的开放硬件设计文件。 该平台的主要目的是开发和定制支持LPDDR4 IC的RAM控制器。 设计文件是在KiCad中准备的。 该设计现在是进行中的作品。 储存库结构 主存储库目录包含KiCad PCB项目文件,许可证和自述文件。 其余文件存储在以下目录中: lib包含组件库 img包含本自述文件的图形 主要特点 Kintex-7 FPGA-XC7K70T-FBG484 带有定制DDR4 SO-DIMM连接器的模块化设计 HDMI输出连接器 带有1GbE收发器的以太网RJ45连接器 带有FT4232HQ FTDI USB控制器的Micro USB调试连接器 JTAG microSD卡插槽 QSPI闪存 外部7-12V电源输入 5个用户LED 4个用户按钮 框图 执照
2024-10-22 11:13:08 9.59MB
1
VERILOG-8Gb-LPDDR4-1p1-v6.0 是一个基于VERILOG的8千兆字节(Gb)低功耗双倍数据速率第四代同步动态随机存取内存(LPDDR4)的仿真模型。该模型主要用于在系统级验证或集成电路(IC)设计中模拟LPDDR4内存的行为,以确保与实际硬件的兼容性和性能。 VERILOG是一种广泛使用的硬件描述语言(HDL),用于描述数字电子系统的结构和行为。它允许工程师以类似于编程语言的方式描述电路,同时支持并行处理,这在描述复杂的集成电路如内存控制器和接口时非常有用。在这个项目中,VERILOG被用来创建一个精确且高效的LPDDR4内存模型,便于在仿真环境中测试和验证。 LPDDR4是LPDDR(低功耗DDR)系列的最新标准,旨在为移动设备提供更高的带宽和更低的能耗。相比于前一代LPDDR3,LPDDR4的主要改进包括: 1. **更高的数据速率**:LPDDR4的数据速率通常在2133Mbps至3200Mbps之间,比LPDDR3的最高1600Mbps快了一倍以上,从而提供了更快的内存访问速度。 2. **独立的电压控制**:LPDDR4引入了独立的I/O电源和核心电源,使得功耗管理更加灵活,能有效降低功耗。 3. **两倍的bank组**:LPDDR4内存具有更多的bank组,每个bank可以独立操作,提高了并发访问能力,进一步提升了系统性能。 4. **新命令集**:LPDDR4采用了新的命令和地址信号,以降低功耗和提高信号完整性。 在L4_Customer_Model_V6.tar这个压缩包中,可能包含了以下组件: - **仿真模型源代码**:VERILOG代码文件,定义了LPDDR4内存的行为模型,可能包括读写操作、时序逻辑、错误检测等功能。 - **测试平台**:一组测试向量或测试程序,用于验证模型的功能和性能。 - **用户指南**:详细的文档,解释如何使用这个模型以及如何连接到其他系统组件。 - **配置文件**:用于设置内存参数,如数据速率、bank数量等。 - **仿真脚本**:用于运行和分析仿真的脚本,可能基于VHDL或Verilog仿真工具如ModelSim、Aldec Riviera Pro等。 在实际应用中,这些模型会与处理器、存储器接口和其他系统组件一起集成,并在软件如SystemVue、SystemC、SystemVerilog等环境中进行系统级仿真。通过这种方式,设计者可以在设计早期发现潜在问题,优化性能,减少物理原型制作和测试的成本。
2024-09-03 13:44:41 43KB 编程语言
1
LPDDR 内存的主要参数介绍 CAS Latency (CL) 定义: CAS Latency 是指从内存接收到列地址到开始输出数据所需的时间。它表示了内存响应请求的延迟。 例子: 如果 CL 为 17,意味着内存在接收到列地址请求后,需要 17 个时钟周期才能开始数据传输。更低的 CL 通常意味着更快的内存响应。 RAS to CAS Delay (tRCD) 定义: tRCD 是从行地址选通信号(RAS)有效到列地址选通信号(CAS)有效之间的延迟时间。 例子: tRCD = 18 表示从行地址选中到列地址选中,需要 18 个时钟周期的延迟。这影响了内存的整体访问时间。 Row Precharge Time (tRP) 定义: tRP 是关闭当前活动行并准备下一行的时间。它决定了内存在访问不同行之间的切换时间。 例子: tRP = 20 表示从关闭当前行到准备好下一行需要 20 个时钟周期。这是内存行切换时的一个重要延迟参数。 Row Active Time (tRAS) 定义: tRAS 是一个内存行保持激活状态的最小时间,确保行数据能够被正确地读取或写入。 例子: tRAS ### LPDDR3、LPDDR4 与 LPDDR5 参数详解 #### 1. 引言 LPDDR(Low Power Double Data Rate)作为一种低功耗、高性能的内存技术,在移动设备、嵌入式系统及高性能计算平台中发挥着关键作用。随着技术的发展,LPDDR经历了从LPDDR3到LPDDR4,再到LPDDR5的迭代升级,在数据传输速率、功耗控制及整体性能方面实现了显著提升。本文旨在详细介绍这些不同版本LPDDR内存的主要技术参数、数据线与信号线的功能,以及它们在制造工艺上的差异。 #### 2. LPDDR 内存的主要参数介绍 ##### 2.1 CAS Latency (CL) **定义**:CAS Latency(CL)指的是从内存接收到列地址到开始输出数据所需的时间,即内存响应请求的延迟。 **例子**:如果 CL 设置为 17,则表示内存在接收到列地址请求后,需要经过 17 个时钟周期才能开始数据传输。一般来说,更低的 CL 值意味着更快的内存响应速度。 ##### 2.2 RAS to CAS Delay (tRCD) **定义**:tRCD 是指从行地址选通信号(RAS)有效到列地址选通信号(CAS)有效之间的延迟时间。 **例子**:当 tRCD 被设置为 18 时,表示从行地址选中到列地址选中,需要经过 18 个时钟周期的延迟。这一参数直接影响了内存的整体访问时间。 ##### 2.3 Row Precharge Time (tRP) **定义**:tRP 定义了关闭当前活动行并准备下一行的时间,即内存在访问不同行之间的切换时间。 **例子**:假设 tRP 为 20,则意味着从关闭当前行到准备好下一行需要 20 个时钟周期。这个参数对于内存行切换时的延迟至关重要。 ##### 2.4 Row Active Time (tRAS) **定义**:tRAS 是一个内存行保持激活状态的最小时间,以确保行数据能够被正确地读取或写入。 **例子**:当 tRAS 设定为 42 时,表示内存行需要保持激活状态至少 42 个时钟周期,以确保数据稳定传输。 ##### 2.5 Row Cycle Time (tRC) **定义**:tRC 指的是从一个内存行激活到同一个行下一个激活的最短时间间隔,综合了 tRAS 和 tRP。 **例子**:例如,tRC 设定为 60,这意味着一个行操作周期需要 60 个时钟周期,从而影响内存的行循环速率。 ##### 2.6 数据传输速率 (Data Rate) **定义**:数据传输速率是指内存每秒钟可以传输的数据位数,通常以每秒兆位(Mbps)为单位。 **例子**:如 LPDDR4 的数据速率为 4266Mbps,意味着每秒可以传输 4266 百万位数据。数据速率越高,传输速度越快。 ##### 2.7 工作电压 (Operating Voltage) **定义**:工作电压是指内存正常工作所需的电压水平。较低的工作电压可以减少功耗和产生的热量。 **例子**:LPDDR3 的工作电压为 1.2V,而 LPDDR4 降低到了 1.1V,最新的 LPDDR5 更是可以达到 1.05V 或更低。这有助于进一步降低设备的整体能耗。 #### 3. 数据线和信号线详解 ##### 3.1 DQS(Data Strobe) **定义**:DQS 是数据选通信号线,用于同步数据传输的时钟信号,确保数据在正确的时刻被发送或接收。 **作用**:DQS 信号与数据线同步工作,提供数据传输的时间基准,减少数据错误,提高传输效率。 **例子**:在 DDR 内存中,DQS 通常是一个差分信号对,确保数据传输在时钟的上升和下降沿都能准确同步。 ##### 3.2 DQM(Data Mask) **定义**:DQM 是数据屏蔽信号线,用于在写操作时屏蔽无效数据。 **作用**:DQM 信号可以屏蔽特定的数据位,防止无效数据写入内存。适用于部分写入操作,保护其他数据位不被覆盖。 **例子**:写入数据时,如果 DQM 对应位被置位,该数据位将被屏蔽,原有数据不会被覆盖。 ##### 3.3 CK(Clock) **定义**:CK 是时钟信号线,为内存芯片提供必要的时钟信号,用于同步内存的操作。 **作用**:CK 信号是内存正常工作的基础,没有稳定的时钟信号,内存无法正确执行读写操作。 **例子**:CK 信号通过时钟信号发生器产生,并且在整个内存模块中传播,确保所有内存颗粒都能同步运行。 #### 4. LPDDR4 和 LPDDR5 的新增功能 ##### 4.1 LPDDR4 新增功能 - **更高的数据传输速率**:相比 LPDDR3,LPDDR4 提供了更高的数据传输速率,最高可达 4266Mbps。 - **更高效的电源管理**:引入了多种新的电源管理模式,以进一步降低功耗。 - **支持多通道操作**:支持双通道或四通道操作模式,提高了带宽和性能。 ##### 4.2 LPDDR5 新增功能 - **更高的数据传输速率**:LPDDR5 的数据传输速率比 LPDDR4 更高,最高可达 6400Mbps。 - **改进的电源管理**:进一步优化了电源管理机制,降低了工作电压,减少了功耗。 - **增强的错误校正能力**:采用了更强的错误检测与纠正机制,提高了数据完整性。 - **动态电压和频率调节**:支持动态调整电压和频率,以适应不同的工作负载需求,实现更高效的能效比。 #### 5. 制造工艺简介 ##### 5.1 LPDDR3 制造工艺 - **采用 20nm 制程**:早期 LPDDR3 内存大多基于 20nm 制造工艺。 - **功耗控制**:虽然功耗控制较好,但与后续版本相比仍有较大差距。 ##### 5.2 LPDDR4 制造工艺 - **采用 10nm 制程**:LPDDR4 内存普遍采用 10nm 或更先进的制程技术,有效降低了功耗。 - **更高的集成度**:得益于更小的制程,LPDDR4 能够实现更高的集成度和更好的性能。 ##### 5.3 LPDDR5 制造工艺 - **采用 10nm 或更先进制程**:最新的 LPDDR5 内存采用了 10nm 或更先进的制程技术,比如 7nm 或 5nm。 - **极低功耗设计**:通过先进的制程技术和设计优化,LPDDR5 实现了极低的功耗水平。 #### 6. 总结 LPDDR3、LPDDR4 和 LPDDR5 在数据传输速率、功耗控制和性能方面都进行了显著的改进。随着制程技术的进步,新一代 LPDDR 内存不仅提供了更高的性能,还大幅降低了功耗,成为现代移动设备和高性能计算平台不可或缺的一部分。通过了解这些内存的关键参数和技术特性,可以更好地选择适合自己应用需求的产品,并利用其优势来优化系统的整体性能和能效。
2024-08-30 10:23:10 184KB 网络 网络
1
### LPDDR4(低功耗双倍数据速率4)JESD209-4E标准解析 #### 标准概述 《低功耗双倍数据速率4 (LPDDR4)》是JEDEC(固态技术协会)发布的一项重要标准,其最新版本为JESD209-4E,修订于2021年6月,并于2024年6月正式发布。这一标准主要针对低功耗内存技术进行了详细规定,旨在促进内存产品的标准化、互换性和性能提升。 #### LPDDR4技术简介 **LPDDR4**是一种专为移动设备设计的低功耗动态随机存取内存技术。它继承了前代LPDDR3的优点,并在带宽、能效等方面进行了显著改进。该技术广泛应用于智能手机、平板电脑等便携式电子设备中,以满足这些设备对高性能与低功耗的双重需求。 #### 技术特点 1. **高带宽:**LPDDR4支持高达3200MT/s的数据传输速率,相较于LPDDR3有了显著提高。 2. **低功耗:**通过多种节能机制和技术,如更低的工作电压(1.1V),LPDDR4能够在保持高性能的同时大幅度降低能耗。 3. **可扩展性:**LPDDR4支持更灵活的容量扩展方案,包括多芯片封装技术,以满足不同应用的需求。 4. **可靠性与稳定性:**采用了先进的纠错码(ECC)技术,提高了数据传输的可靠性和系统的整体稳定性。 5. **易用性:**LPDDR4简化了设计复杂度,使得设计者能够更容易地将其集成到各种系统中。 #### 技术细节 - **工作电压:**LPDDR4采用1.1V的标准工作电压,相比前代产品降低了功耗。 - **数据传输速率:**最高可达3200MT/s,有效提升了数据吞吐量。 - **地址/命令/控制信号:**这些信号的接口被优化,以提高信号完整性并减少电磁干扰。 - **电源管理:**引入了多种电源管理模式,如深度睡眠模式,进一步降低了功耗。 - **存储器组织:**LPDDR4支持更高密度的存储单元组织,有助于实现更大容量的内存模组。 - **温度范围:**支持广泛的温度范围,确保在不同环境下的稳定运行。 #### 标准制定目的 - **消除误解:**标准的制定有助于消除制造商与购买者之间的误解。 - **产品互换性:**通过标准化,促进了不同品牌内存产品之间的互换性。 - **性能改进:**标准的制定有利于推动技术进步,从而提高内存产品的整体性能。 - **便于选择:**为购买者提供了明确的选择指南,帮助他们快速找到适合的应用产品。 #### 标准适用范围 JEDEC标准适用于所有内存制造商和用户,无论是JEDEC成员还是非成员。这些标准不仅在国内得到广泛应用,在国际市场上也具有很高的认可度。 #### 结论 LPDDR4 JESD209-4E标准代表了当前低功耗内存领域的最先进技术。通过不断的技术迭代和完善,LPDDR4不仅在性能上实现了突破,还在功耗控制方面取得了显著成就,极大地推动了移动计算领域的发展。对于设计师和制造商来说,理解和掌握这一标准将有助于他们开发出更加高效、节能的产品。
2024-07-31 15:17:38 6.33MB LPDDR4
1
JESD209-4B-LPDDR4.pdf
2024-05-20 13:24:47 7.5MB lpddr4
1
本文档介绍了LPDDR4的信号完整性测试指导,内含有详细的指导操作,包括如何在实际测试出的读写信号的建立时间、保持时间等时序值。
2024-03-29 16:21:48 4.1MB 信号处理 数字信号处理 单元测试
1
**重要提醒: 解读已更新到v2.3, 包含老版本所有注解** ** 文档不仅是LP4 Spec文档,而是Spec的注释解读。 ** 解读是注释,即文中黄色或绿色下划线的注解,试读看不到。 ** 退款: 承诺如对文档注释不满意,可线下联系作者申请退款。
2022-10-23 22:00:33 6.03MB LPDDR4 LPDDR4X DRAM DDR4
1
** 行业标准: 作者有数年Spec经验, 熟悉JEDEC标准。 ** 咨询: 免费每天3个问题的解答。 ** 退款: 如对于解读不满意,可线下联系作者申请退款。 对内容质量有疑问,可提前私信咨询。
2022-10-23 17:00:29 14.41MB DDR4 LPDDR4 DDR5 LPDDR5
1
lpddr4 jedec 最新协议标准
2022-09-13 17:00:32 4.72MB ddr lpddr4 jedec JESD209
1
LPDDR4 LPDDR4X的设计详解1----上电时序及初始化
2022-09-13 10:35:59 414KB 嵌入式
1