内容概要:本文深入探讨了半桥与全桥LLC仿真中谐振变换器的四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM和混合控制PFM+PSM。每种控制方式都有其独特的应用场景和技术特点。频率控制PFM适用于需要稳定输出电压和电流的场合,如UPS系统和变频空调;PWM控制通过改变开关管的导通时间来实现对电流和电压的控制,广泛应用于LED驱动器和逆变器;移相控制PSM通过移相角来控制变换器输出,适用于电动汽车充电站和变频风机;混合控制PFM+PSM则结合了前两种控制方式的优势,提高了变换器的性能和效率。此外,文章还介绍了PLECS、MATLAB和SIMULINK等仿真工具在电力电子领域的应用,帮助工程师模拟实际电路的工作状态,预测电路性能和稳定性。 适合人群:从事电力电子研究和开发的技术人员,尤其是对谐振变换器控制方式感兴趣的工程师。 使用场景及目标:①理解和掌握谐振变换器的不同控制方式及其应用场景;②利用PLECS、MATLAB和SIMULINK进行电路仿真,优化设计方案;③提高电力电子设备的性能和能效。 其他说明:随着技术的进步,未来可能会有更多的创新控制方式出现,进一步推动电力电子设备的发展。
2025-10-19 03:37:51 1004KB
1
大厂PFC与全桥LLC集成变频控制的两相交错TCM图腾柱PWM代码实现方法及优化策略,大厂量产的两相交错TCM图腾柱变频控制PFC+全桥LLC源代码 PFC可通过变频控制实现软开关 ,两相交错TCM; 图腾柱变频控制; PFC; 全桥LLC; 软开关。,大厂高频两相交错TCM图腾柱PFC+全桥LLC变频控制源代码 在现代电力电子技术领域,功率因数校正(PFC)和全桥LLC谐振变换器(LLC)是提高电能转换效率和功率密度的重要技术。大厂在此技术上实现了两相交错时钟调制(TCM)图腾柱脉冲宽度调制(PWM)的控制方法,并提供相应的源代码,为变频控制提供了新的实现路径和优化策略。 PFC技术主要是用来改善电力系统中功率因数,通过变频控制可以实现软开关技术,从而降低开关器件的开关损耗,提高整体电能转换效率。全桥LLC谐振变换器作为一种高效的DC/DC转换器,具备优秀的调压特性和负载调整能力。将PFC与全桥LLC进行集成,不仅能够提供更加稳定和高效的能量转换,还能够通过两相交错技术进一步降低系统的纹波电流和谐波含量。 图腾柱变频控制结合了图腾柱拓扑结构和变频控制的优点,它能够实现电能的高效传输,同时保持较低的开关损耗。两相交错TCM技术的应用,则是利用两相或多相交替工作的特点来进一步平滑输出波形,降低能量转换中的噪声和干扰,提高系统的稳定性和可靠性。 大厂的技术创新不仅在理论上取得了突破,在实际应用上也提供了完整的源代码实现。这些代码基于高级编程工具和开发环境,例如gulp,这是一种自动化工具,通常用于前端开发中,处理文件的压缩、合并、转译等任务。虽然gulp主要用于Web开发中的静态资源处理,但在大厂的案例中,它可能被用于编译或构建源代码,以确保代码的质量和效率。 通过分析压缩包中的文件名称列表,我们可以发现其中包含了多种文档和文本文件,它们详细记录了大厂量产技术中的创新点和技术细节。例如,“大厂量产的全桥变频控制技术两相交错图腾柱软.doc”和“大厂量产的与全桥电源管理两相交错图腾柱变频控.doc”等文档,很可能是对相关技术的详细描述和实现步骤说明。这些文档对于深入理解大厂的技术创新以及如何在实际生产中应用这些技术具有重要价值。 大厂在PFC与全桥LLC集成变频控制技术领域的创新,不仅推动了电力电子技术的发展,也为相关产业的生产效率和产品质量提升提供了强大的技术支持。通过这些技术的实现和优化策略,大厂为其量产设备中的电能转换系统带来了革命性的变革。
2025-10-14 15:00:45 77KB gulp
1
内容概要:本文详细介绍了设计一个输入400V、输出48V、功率2KW的全桥LLC谐振变换器的过程。主要内容包括谐振电路参数(如谐振电感Lr、谐振电容Cr、励磁电感Lm)的计算,变压器匝比的确定,MOS管和二极管的选择,以及输出电容的计算。文中还展示了如何利用Matlab/Simulink进行仿真验证,确保设计的正确性和稳定性。通过调整参数,观察输出电压和电流的波形,确保设计满足要求。 适合人群:电力电子工程师、从事电源设计的技术人员、对LLC谐振变换器感兴趣的科研人员。 使用场景及目标:适用于需要设计高效、稳定的全桥LLC谐振变换器的场合,特别是对于需要精确计算和仿真的应用场景。目标是帮助读者掌握LLC谐振变换器的设计方法,提高设计效率和准确性。 其他说明:文章提供了详细的数学公式和Matlab代码片段,便于读者理解和复现设计过程。同时,强调了实际应用中的注意事项,如元件选择、参数调整和仿真技巧。
2025-10-08 16:08:45 856KB
1
频率控制与滞环控制下的半桥和全桥LLC电路仿真比较:动态特性与闭环系统稳定性研究,频率控制与滞环控制下的半桥和全桥LLC电路仿真对比:动态特性与输出电压稳定性研究,频率控制和滞环控制的半桥 全桥LLC电路仿真对比 两种方式下均可实现输出电压闭环控制 ,模型中包含负载的阶跃变化过程 ,可以验证闭环系统稳定性 滞环控制和变频控制下的电感电流和输出电压波形图如第二幅图所示 ,在图中0.1s处进行了满载到半载的切 通过比对可以看出: 滞环控制下变器的动态特性好 鲁棒性强 输出电压跌落小 动态响应快 且采用滞环控制时,变器启动过程中输出电压几乎无超调 运行环境有:matlab simulink plecs等 ~ ,频率控制; 滞环控制; 半桥全桥LLC电路; 仿真对比; 输出电压闭环控制; 负载阶跃变化; 闭环系统稳定性; 电感电流波形; 输出电压波形; 动态特性; 鲁棒性; 启动过程超调; matlab simulink plecs。,Matlab Simulink PLECS中的LLC电路:滞环与频率控制半桥全桥仿真对比
2025-09-28 17:55:05 1.85MB istio
1
内容概要:本文介绍了一种300W ACDC变换器的设计方案,采用前级单相PFC-Boost电路实现功率因数校正与整流,提升输入侧电能利用率,并通过后级半桥LLC谐振变换器实现软开关,降低开关损耗,提高效率与系统稳定性。系统输出为12V/25A,适用于高效率、高功率密度电源场景。 适合人群:从事电力电子、电源设计相关工作的工程师,具备一定电路拓扑与控制理论基础的研发人员。 使用场景及目标:①应用于服务器电源、通信设备电源等对效率和稳定性要求较高的场合;②学习PFC与LLC两级结构设计方法,掌握软开关实现原理与功率因数校正技术。 阅读建议:重点关注前级PFC控制策略与后级LLC谐振参数设计之间的协同优化,结合实际电路调试理解软开关实现条件与系统动态响应特性。
2025-09-28 11:19:00 634KB
1
基于Matlab的无线充电仿真:LCC谐振器与不同拓扑的磁耦合谐振无线电能传输系统解析与建模,无线充电仿真 simulink 磁耦合谐振 无线电能传输 MCR WPT lcc ss llc拓扑补偿 基于matlab 一共四套模型: 1.llc谐振器实现12 24V恒压输出 带调频闭环控制 附参考和讲解视频 2.lcc-s拓扑磁耦合谐振实现恒压输出 附设计过程和介绍 3.lcc-p拓扑磁耦合谐振实现恒流输出 附设计过程 4.s-s拓扑补偿 带原理分析,仿真搭建讲解和参考,可依据讲解自行修改参数建模 四套打包 ,关键词:无线充电仿真;Simulink;磁耦合谐振;无线电能传输(WPT);MCR;LLC谐振器;LCC-S拓扑;LCC-P拓扑;调频闭环控制;设计过程;恒压输出;恒流输出;s-s拓扑补偿;Matlab。,基于Matlab的无线充电仿真模型:多拓扑磁耦合谐振无线电能传输系统研究
2025-09-27 13:53:52 352KB 开发语言
1
三相维也纳功率因数校正(PFC)技术是电力电子领域的一个重要分支,它的主要作用是改善交流电源输入端的功率因数,使电能的使用更加高效。开关电源技术则是通过使用半导体开关器件来调节电源电压或电流,以实现电源的高效、稳定、小型化。当这两种技术结合时,能够得到性能更加优越的电源设备,例如本案例中的三相AC输入无桥PFC±400VDC输出开关电源。 该开关电源已经经历了两年的量产,技术成熟稳定,这在产品的生命周期中是一个相当长的时间,足以证明其性能的可靠性和市场的认可度。它支持三相AC输入,无桥设计意味着结构更加简洁,减少了部件数量,降低了故障率,提高了效率,同时也使得系统的整体成本更加低廉。该电源输出稳定的±400VDC,这在工业应用中具有广泛的需求,例如在通信设备、电动汽车充电站以及工业自动化设备中。 提供的源代码、原理图和PCB资料齐全,这对于工程师来说是一个非常宝贵的信息,因为它不仅能够帮助他们更好地理解产品的工作原理,还能够根据这些资料进行产品定制化开发或是故障排除。此外,这种透明度在商业合作中也起到了积极作用,它增强了合作伙伴的信任,加速了项目的推进速度。 除了上述的三相维也纳PFC技术,文档中还提到了其他两种成熟方案——移相全桥和LLC。这两种技术同样是开关电源领域的先进技术,它们通过优化开关频率、工作模式等参数,实现了高效率和低电磁干扰的特点。移相全桥是一种成熟的软开关技术,通过控制高频功率开关的相位,达到减少开关损耗,提高转换效率的目的。而LLC谐振转换器是一种利用谐振现象进行能量转换的电路结构,它在高频开关应用中具有很高的效率和良好的负载适应性。 文档名称中出现的“技术深度解析”、“设计与应用”、“技术成熟方案下的电力转换艺术”、“技术分析与量产两年成果展示”、“成熟方案与实现细节”等词汇,揭示了文档内容不仅关注于理论分析,更着重于实际应用和方案的实现细节。这为相关领域的技术人员提供了从理论到实践的完整知识链路,有助于他们更深刻地理解技术细节,并能够将这些知识应用到实际的设计和开发工作中。 另外,从文件名列表中可以得知文档可能包含了设计说明、技术分析、应用案例以及成果展示等方面的内容。这使得本套资料不仅适用于研发人员,也适合市场和销售人员,甚至是非专业人士进行阅读和理解,从而在更广泛的范围内传播三相维也纳PFC技术以及开关电源技术。 本套资料提供了一个全面的技术解决方案,通过详尽的文档资料,详细地解释了三相维也纳PFC技术及其在开关电源领域的应用,对于从事电源设计和相关领域的工程师来说,是一份不可多得的学习和参考资料。
2025-09-19 14:34:03 180KB gulp
1
内容概要:本文详细介绍了大厂LLC谐振变换器的设计思路和技术细节。首先探讨了谐振参数计算的关键函数,如谐振频率、增益曲线等,并强调了M值选择的重要性。接着分析了死区时间的动态调整机制,展示了如何根据母线电压和电流特性优化死区时间设置。随后讨论了软启动策略,包括频率斜坡、移相控制以及过流保护确认。此外,还提供了波形诊断脚本,用于检测ZVS实现情况和谷底导通时机。文中还提到驱动电路布局的重要性,指出PCB设计规范对于稳定性的关键作用。最后,介绍了基于Python和PLECS的自动化参数计算和仿真验证流程,以及一些实用的设计技巧,如动态死区补偿和轻载跳周期模式。 适合人群:从事电力电子设计的工程师,尤其是对LLC谐振变换器感兴趣的中级及以上水平的研发人员。 使用场景及目标:帮助工程师理解和应用大厂的实际设计经验和优化方法,提高LLC谐振变换器的设计效率和性能。具体应用场景包括但不限于电源管理、高效能转换器设计等领域。 其他说明:文章不仅涵盖了理论公式,还包括了大量的实战经验和代码实例,有助于读者将理论知识转化为实际工程能力。同时提醒读者关注PCB布局和元件选型等细节,这些都是影响最终产品性能的重要因素。
2025-09-18 20:23:16 1.62MB
1
内容概要:本文详细介绍了如何利用PSIM9.1软件构建全桥LLC变换器的闭环仿真模型,涵盖主电路搭建、参数设置、闭环控制逻辑以及仿真的具体步骤。文中不仅探讨了关键组件如MOSFET、变压器的设计要点,还展示了如何通过调整参数优化ZVS特性和频率响应,确保仿真结果贴近实际情况。此外,针对常见的仿真问题提供了实用解决方案,如防止高频振荡、提高仿真收敛性等。 适合人群:从事电力电子设计的专业人士,尤其是对LLC变换器及其闭环控制系统感兴趣的工程师和技术爱好者。 使用场景及目标:适用于希望深入了解LLC变换器工作原理及其实现细节的研究人员和开发者。通过本文的学习,能够掌握如何使用PSIM进行高效、精确的仿真,从而为实际硬件设计提供理论支持和数据依据。 其他说明:文中提供的实例和技巧有助于提升仿真的准确性,避免常见错误,同时也能更好地理解和优化LLC变换器的各项性能指标。
2025-09-18 20:20:49 485KB
1
在电力电子领域中,LLC谐振转换器因其独特的性能优势,如高效率、高功率密度和宽输入电压范围而受到广泛关注。LLC谐振转换器的设计和分析往往依赖于其传递函数的精确建立。传递函数是描述线性时不变系统输出与输入之间关系的数学模型,它能够揭示系统在不同工作频率下的动态特性。对于LLC谐振转换器而言,传递函数是基于其谐振电感、谐振电容和变压器漏感等关键参数的函数,它能够帮助设计师优化转换器性能。 LLC扫频法是一种有效的实验方法,用于确定和验证LLC谐振转换器的传递函数。通过扫频法,可以改变输入信号的频率并测量输出响应,从而获得系统的频率响应数据。这些数据可以用来绘制波特图(Bode plot),波特图显示了系统增益和相位随频率变化的情况。通过这些数据和图表,工程师可以分析系统在不同频率下的稳定性和响应特性。 在LLC仿真文件中,通常包含了相关的电路模型和参数设置。利用仿真软件,如MATLAB/Simulink等,可以构建精确的电路模型,并且设置相应的控制策略。在仿真环境下,工程师能够通过模拟不同的工作条件和负载变化,来分析转换器的动态响应。此外,仿真可以用来验证理论分析和实验数据的准确性,对于设计和优化过程至关重要。 LLC谐振转换器的仿真不仅包括传递函数的获取,还可能涉及整个系统的效率分析、热设计和EMI(电磁干扰)评估等。通过对这些因素的综合考虑,设计师可以确保转换器在实际应用中的性能达到最优。 LLC谐振转换器的一个主要挑战是如何保持高的转换效率,同时确保在宽广的输入和负载范围内都能保持稳定运行。这通常要求对谐振参数进行精确控制,以实现所需的软开关特性。此外,随着开关频率的提高,转换器的开关损耗也会增加,这就要求设计师在设计时要平衡开关频率与转换效率之间的关系。 通过LLC扫频法获得的仿真传递函数,可以帮助设计师深入理解LLC转换器的工作原理,评估和优化关键参数,最终设计出高性能的LLC谐振转换器。这种设计方法是现代电力电子系统开发中不可或缺的一环,尤其在新能源转换、电动汽车充电、数据中心电源管理等领域具有广泛的应用前景。
2025-09-18 17:55:01 156.24MB
1