卷积神经网络的原理及代码实现与典型神经网络LeNet-5、AlexNet、VGGNet、ResNets的原理
2022-08-30 21:05:44 4.45MB
1
LeNet-5卷积神经网络(CNN)虽然在手写数字识别上取得很好的分类效果,但在具有复杂纹理特征的数据集上分类精度不高。为提高网络在复杂纹理特征图像上分类的正确率,提出一种改进的LeNet-5网络结构。引入跨连思想,充分利用网络提取的低层次特征;把Inception V1模块嵌入LeNet-5卷积神经网络,提取图像的多尺度特征;输出层使用softmax函数对图像进行分类。在Cifar-10和Fashion MNIST数据集上进行的实验结果表明,改进的卷积神经网络在复杂纹理特征数据集上具有很好的分类能力。
2022-06-04 21:55:34 787KB 论文研究
1
LeNet5 by Yann LeCun 简介 LeNet-5结构图 LeNet包含七层 输入层:32*32*1像素的手写数字图片,相当于32*32=1024个神经元 C1层:卷积层,包含具有6个5*5卷积核的卷积层,步长为1,特征图的大小为28*28,神经元的个数为28*28*6=784。参数个数为(5*5+1)*6=156,连接数为156*28*28=122304。 S2层:池化层,max pooling。padding=0,size=2*2,stride=2,输出6张大小为14*14的特征图。 C3层:卷积层,卷积核大小为5*5,步长为1,所以得到的特征图为10*10。16个卷积核一共
2022-05-16 16:39:29 979KB
1
以上帝的名义 LeNet-5 该存储库包含Tensorflow的 (手写字符识别)的实现,以及使用和进行测试的网络。 训练mnist数据集 要使用mnist数据集训练网络,请在命令提示符下键入以下命令: python3 ./train_mnist.py mnist数据集的样本图像: 结果 时代0 Train Accuracy = 0.121 Test Accuracy = 0.121 Validation Accuracy = 0.128 纪元1 Train Accuracy = 0.963 Test Accuracy = 0.966 Validation Accuracy = 0.964 纪元2 Train Accuracy = 0.976 Test Accuracy = 0.976 Validation Accuracy = 0.977 ... 纪元50 Trai
2022-05-12 14:33:47 18.26MB Python
1
LeNet-5手写字体识别-Keras函数式模型完整代码,可进入网址 https://www.cnblogs.com/ailex/p/9617534.html 直接查看
2022-03-20 11:03:54 21KB Keras Minist LeNet-5 函数式模型
1
LeNet-5 这实现了略微修改的LeNet-5 [LeCun et al。,1998a],并在上达到了约99%的准确度。 设置 使用以下命令安装所有依赖项 $ pip install -r requirements.txt 用法 启动visdom服务器进行可视化 $ python -m visdom.server 开始训练程序 $ python run.py 请参阅时期火车损耗实时图表。 经过训练的模型将作为ONNX导出到lenet.onnx 。 可以使用查看lenet.onnx文件 参考 [ ] Y. LeCun,L。Bottou,Y。Bengio和P. Haffner。 “基于梯度的学习应用于文档识别。” IEEE会议论文集,86(11):2278-2324,1998年11月。
1
针对深度学习中ResNet深度卷积神经网络与LeNet-5模型在图像识别、文字识别和语音识别等领域广泛应用,文中对两种模型的运行机理和方式进行了详细阐述,并对两者在实际应用中的表现进行了对比与分析。首先对两种模型的结构和设计分别进行了叙述,并指出了两种模型面对不同问题的优缺点,且为工程实践提供了指导。然后基于分析进一步对两种模型进行了重建和训练,以实现更优的性能。仿真结果表明,ResNet深度卷积神经网络相比LeNet-5模型在实际应用中具有更好的效果。
1
深度学习Caffe框架实战剖析教程(深度学习、机器学习、LeNet-5模型、MNIST数据集、CNN),本教程以目前已经大量用于线上系统的深度学习主流框架Caffe为例,从底层开始,由浅入深,先是概述Caffe框架,说明其和深度学习的关系,然后讲解并演示 Caffe的配置、部署、使用,接着讲解了Caffe的基本数据结构,然后通过大量的阅读Caffe源码理解其精髓,加强对深度学习理论的理解,终达到熟练运用 Caffe 解决实际问题的目的。
2021-12-16 09:09:33 915B 深度学习 机器学习 LeNet-5模型 CNN
1
深度学习Caffe框架实战剖析教程(深度学习、机器学习、LeNet-5模型、MNIST数据集、CNN) 课程收益 目标一. 了解Caffe框架的环境配置以及LEVELDB和LMDB数据。 目标二. 学习并且掌握Caffe框架最基础的数据结构,明白其各结构之间的关系。 目标三. 阅读明白Caffe框架的源码,特别是其入口程序也就是Caffe.cpp的源码理解,这样可以熟悉Caffe程序运行流程。 目标四. 明白Caffe最优化求解过程,重点是求解器,以及求解器的实现等等。
2021-12-10 15:15:07 923B 深度学习 机器学习 LeNet-5模型
1
文件为py文件,用pycharm打开即可,使用lenet-5训练三次即可达到0.98识别率,非常简单,适合新手入门。。。。。。。
2021-12-01 21:20:30 2KB keras 手写字体识别 lenet-5
1