基于知识图嵌入的推荐系统 基于知识图嵌入的推荐系统 本系统是一个基于知识图嵌入的商品推荐系统,以下是该系统的详细介绍,基本代码都是自己所写,TransE和Rescal方法实现部分是照着论文与相关代码自己进行的复现,并且相关代码中都有我写的一些注释。 1.generate_data.py是用于生成模拟数据,在进行真实使用时可以参照所生成的模拟数据的格式进行数据录入 2.data文件夹下需要有entities.txt以及relations.txt两个数据,他们分别是实体(people和items)的名称以及索引号,以及关联的名称以及索引号,关联也可以有多种,然后该文件夹下还应该有train.txt,valid.txt和test.txt,作为模型训练的依托,其中的neg.txt可要可不要,这个文件并不参与模型的训练过程 3.dataset.py文件主要是模型训练中处理数据的代码,model.p
2022-11-21 21:20:29 1.77MB 系统开源
1
Knowledge Graph Embedding via Dynamic Mapping Matrix
2021-12-16 20:44:17 1.27MB 研究论文
1
这是针对这篇论文做的PPT,PPT下有备注,可以帮助更详细地理解,需要和AutoSF论文翻译互相补充着看
2021-12-09 23:19:15 1.34MB AutoML
1
实体对齐旨在在不同的知识图(KG)中找到引用同一真实世界对象的实体。 KG嵌入的最新进展推动了基于嵌入的实体对齐的出现,该对齐方式在连续的嵌入空间中对实体进行编码,并根据学习到的嵌入来度量实体的相似性。 在本文中,我们对这一新兴领域进行了全面的实验研究。 这项研究调查了23种最新的基于嵌入的实体对齐方法,并根据它们的技术和特征对其进行了分类。 我们进一步观察到,当前的方法在评估中使用不同的数据集,并且这些数据集中的实体的程度分布与真实的KGs不一致。 因此,我们提出了一种新的KG采样算法,通过该算法我们可以生成一组具有各种异质性和分布的专用基准数据集,以便进行实际评估。 这项研究还产生了一个开源库,其中包括12种代表性的基于嵌入的实体对齐方法。 我们在生成的数据集上对这些方法进行了广泛的评估,以了解它们的优势和局限性。 此外,对于当前方法中尚未探索的几个方向,我们进行探索性实验并报告我们的
1