基于javaEE_电子政务主要用于实现政府机关的政务管理,基本功能包括:前台管网展示、留言板、后台登陆、修改密码、网站公告、政府网站、领导信箱、表格下载、政务公开、便民电话、新闻动态、地区概况、留言管理等。本系统结构如下: (1)JAVA、JSP电子政务网(前台): 领导信箱模块:实现发送邮件信息功能; 地区概况模块:实现地区概况查看功能; 动态信息模块:实现公告公示功能; 政务信息动态模块:实现政务信息动态查看功能; 法律法规模块:实现法律法规查看功能; 网上办事模块:实现办事指南,意见反馈,表格下载功能; 政务公开模块:实现干部任免,政府文件,政府采购功能; 便民服务模块:实现便民电话,投诉举报功能; 政府部门网站模块:实现政府部门网站查看功能; (2)JAVA、JSP电子政务网(后台): 修改密码模块: 实现密码修改功能; 网站公告模块: 实现公告查看、添加、删除功能; 政府网站模块:实现网站查看、添加、删除功能; 领导信箱模块:实现领导信箱查看、添加、删除功能; 表格下载模块:实现表格下载查看、添加、删除功能; 政
2025-07-10 23:06:36 95.3MB Java 管理系统 系统源码
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-07-08 21:56:05 4.58MB MATLAB
1
内容概要:本文档主要介绍了如何在Blender中将线体转换为三维管线模型。首先,通过GIS插件导入投影shp数据,选择Web墨卡托投影坐标系,生成三维线体。接着,在物体模式下选择线体并将其转换为曲线,再添加一个圆环作为截面形状。然后,在属性面板中设置曲线的倒角为物体类型,并选中刚才添加的圆环,从而生成管线结构。最后,可以在转换为网格前调整管线形状,确保修改器仍有效,若不再需要修改,则可以删除曲线和圆环并导出模型。; 适合人群:对Blender有一定了解,希望学习如何将二维线体转换为三维管线模型的用户,特别是从事地理信息系统(GIS)相关工作的专业人士。; 使用场景及目标:① 使用GIS插件导入地理数据并进行初步处理;② 掌握Blender中将线体转换为曲线的具体步骤;③ 学习如何通过添加圆环截面来构建三维管线模型;④ 掌握在转换为网格前后调整管线形状的方法。; 其他说明:文档提供了详细的步骤指导,包括关键操作的具体位置和参数设置。此外,还附带了两个参考链接,供用户进一步了解和学习。用户应按照文档中的步骤逐步操作,确保每一步都正确无误,以达到预期效果。
2025-07-08 10:23:11 5.18MB Blender GIS 3D建模 Shapefile
1
线控制动技术是汽车行业中一个重要的发展方向,尤其在电动化和智能化趋势下,其重要性愈发凸显。线控制动,即通过电液或电气助力、全电动的方式替代传统的机械连接来控制制动系统,以实现更精确、快速的制动效果。清华大学在这一领域的技术路线图中,对中国汽车工程学会的线控制动技术进行了深入的研究和规划。 线控制动系统主要包括电控单元、管路、制动器等组件,可以分为人力真空助力、电液助力、电气助力和全电动等形式。目前,EBS(电子稳定控制系统)和ABS(防抱死制动系统)+ESC(电子稳定程序)的方案并行发展,其中EBS基于ABS的ESC和基于EBS的ESC都有所应用。而气压高压蓄能器架构的技术已经相对成熟,推动了线控制动系统的产业化进程。 清华大学的编制思路涵盖了核心技术、关键部件以及涉及的车型范围,包括乘用车和商用车,研究对象包括线控液压、线控气压、EMB(电动机械刹车)和EPB(电子驻车制动)等制动系统。目标是在2025年和2030年分别实现不同级别的自动驾驶安全需求,同时提升产品的性能、可靠性和寿命,使之达到国际一流水平。 在关键技术预判方面,清华大学着重关注了系统冗余、智能算法和硬件兼容性。系统冗余是为了确保在单个组件失效时仍能保证制动功能,例如通过多层次冗余系统,如液压线控的电动主缸、ESC和EPB,以及气压线控的IEBS、ABS和EPB等。智能算法则涉及多车协同制动,如在高速公路和专用道路上的自动驾驶情境中,通过智能规划多车紧急制动行程,以确保一致的制动性能。硬件兼容性和高精度控制主要体现在电磁阀、主缸电机、传感器等硬件的兼容性与控制性能,以及硬件的可靠性和使用寿命。 清华大学的线控制动技术路线图为中国的线控制动技术发展提供了明确的方向,旨在通过技术创新和产业化推进,培养出具有国际竞争力的企业,推动中国在智能底盘领域的领先地位,并为未来的自动驾驶汽车提供坚实的技术支撑。
2025-07-07 13:43:08 2.91MB 智能底盘
1
### 电路教学与Multisim仿真实验:RC动态电路实验 #### 1. 引言 本实验旨在通过Multisim仿真软件进行RC一阶电路的动态特性研究,包括零输入响应、零状态响应以及时间常数τ的测量。通过实验加深对RC电路工作原理的理解,掌握使用Multisim软件搭建电路、进行仿真测试的方法。 #### 2. 实验准备 - **软件准备**:使用NI Multisim 14.0版本作为本次实验的仿真平台。 - **硬件准备**:无需实际的硬件设备,所有实验均在软件中完成。 - **理论基础**: - **RC电路**:RC电路是一种最基本的线性电路之一,由一个电阻R和一个电容C串联组成。 - **零输入响应**:指的是电路在没有外部激励时,仅由电路初始储能产生的响应。 - **零状态响应**:电路在初始状态为零的情况下,仅由外部激励产生的响应。 - **时间常数τ**:用于描述RC电路中电压或电流达到稳态值所需时间的一个重要参数,其值等于RC。 #### 3. 实验步骤与分析 ##### 3.1 RC电路的响应测试 - **实验目的**:测量RC一阶电路的零输入响应、零状态响应曲线和时间常数τ。 - **实验步骤**: 1. **搭建电路**:在Multisim中创建新工程,选择合适的电阻R(10kΩ)和电容C(0.01μF)构建电路模型,如图1所示。 2. **设置激励源**:使用函数信号发生器产生方波信号,振幅设为2V,频率设置为1KHz,以此模拟电路的激励信号。 3. **观测与记录**:使用示波器观测激励信号uS与响应信号uC的变化规律,并记录数据。 ##### 3.2 零输入响应与零状态响应 - **零输入响应**:在电路中初始有储能的情况下,切断外加激励,此时电路的响应称为零输入响应。在本实验中,可通过调节方波的下降沿来模拟开关断开的情况,进而观察零输入响应的变化。 - **零状态响应**:电路在初始状态为零的情况下,由外部激励产生的响应。在本实验中,通过方波的上升沿来模拟开关闭合,即电源接入的瞬间,从而观察零状态响应。 ##### 3.3 时间常数τ的测量 - **理论计算**:τ = RC = 10kΩ × 0.01μF = 0.1ms = 100μs。 - **实际测量**:观察示波器中uC上升至0.632Us所需的时间,记录这一时间值即为时间常数τ。例如,若Us = 4V,则uC上升至2.53V所需的时间即为τ。 ##### 3.4 探究微分电路和积分电路 - **积分电路**:当电路的时间常数τ远大于输入信号的周期T时,电容C两端的电压uC与输入信号uS呈积分关系。通过改变电阻R的值或电容C的值,可以观察到响应曲线的变化。随着τ的增加,响应曲线会呈现出近似三角波的形式。 - **微分电路**:当电路的时间常数τ远小于输入信号的周期T时,电阻两端的电压uR与输入信号uS呈微分关系。同样地,通过改变电阻R的值,可以观察到响应曲线的变化。 #### 4. 总结与讨论 通过对RC一阶电路的零输入响应、零状态响应以及时间常数τ的研究,不仅加深了对电路动态特性的理解,还掌握了使用Multisim软件进行电路设计与仿真的方法。此外,通过对比理论计算与实际测量结果,进一步验证了电路理论的正确性,也为后续深入学习奠定了坚实的基础。 #### 5. 扩展思考 - 在本实验中,我们主要关注了RC电路的基本特性,但对于更复杂的电路结构,例如RLC串联或并联电路,又有哪些不同的特点和应用场景呢? - 如何利用Multisim等仿真软件进一步优化电路设计,提高电路性能? - 在实际应用中,如何考虑非理想元件(如非线性电阻、漏电流等)对电路性能的影响? 通过本次实验的学习,不仅能够掌握基本的电路理论知识,还能培养解决实际问题的能力,为将来从事电子技术领域的研究与开发打下良好的基础。
2025-07-05 22:46:45 695KB
1
CAXA线切加密锁是针对CAXA线切割软件的一种安全保护机制,它通过特定的加密技术确保软件不被非法复制和使用。CAXA是中国知名的CAD/CAM软件提供商,其线切割软件广泛应用于机械制造、模具设计等领域,提供高效、精确的线切割加工解决方案。在描述中提到的方法是一种破解行为,尽管这里是为了说明如何激活未授权的软件,但应当注意,这种行为违反了软件的许可协议,并可能触犯法律。 CAXA线切割软件的核心功能包括: 1. **2D设计**:提供强大的二维绘图工具,用户可以创建、编辑和修改各种工程图,如零件图、装配图等。 2. **3D造型**:虽然线切割主要处理2D图形,但部分CAXA软件可能包含基础的3D建模功能,帮助用户将实体模型转化为适合线切割的2D轮廓。 3. **轨迹生成**:根据设计的2D图形自动生成线切割加工轨迹,考虑切割速度、进给量、抬刀高度等因素,优化切割效率和精度。 4. **后置处理**:将生成的轨迹转换为线切割机床能识别的代码,如G代码或M代码。 5. **模拟仿真**:在软件中预览切割过程,检查是否存在干涉、过切等问题,减少实际操作中的错误。 6. **加密锁**:为了防止未经授权的使用,CAXA软件通常会采用加密锁技术,将软件与硬件设备(如USB加密狗)绑定,只有插入正确的加密锁才能运行软件。 描述中提到的破解方法涉及到替换原有文件,这通常是通过替换程序中的某些组件来绕过激活机制。但是,这种方式存在风险,比如可能导致软件不稳定、丢失更新、甚至引入恶意代码。合法的使用方式是购买官方授权,这样不仅可以获得技术支持和更新,也是对软件开发者劳动成果的尊重。 对于企业或个人用户来说,遵守软件许可协议并合法使用软件至关重要。这不仅能避免法律纠纷,也有助于维护良好的商业信誉。同时,合法使用软件也能确保用户得到最新的功能和技术支持,从而提高工作效率和产品质量。因此,尽管破解看似节省成本,但从长远来看,合法使用软件更为明智。
2025-07-02 13:15:10 930KB CAXA
1
### AWR 仿真分支线定向耦合器设计与分析 #### 一、设计要求 - **中心频率**:925MHz - **基材**:FR4,介电常数 4.4,损耗正切 0.02 - **高度**:1.6mm - **微带金属厚度**:T = 0.035mm - **输入输出阻抗**:100Ω - **扫频范围**:6GHz - 12GHz #### 二、理论分析 ##### 2.1 分支线定向耦合器简介 分支线定向耦合器是一种常见的四端口微波无源器件,主要用于信号的分配与合成,具有良好的方向性和隔离特性。传统的分支线耦合器通常采用四条四分之一波长的传输线组成,在中心频率附近能实现90°相移。 根据微带传输线理论,随着阻抗值的增加,传输线的宽度会逐渐变窄。当所有端口均处于匹配状态时,由端口①输入的功率将通过不同的路径被传输到其他三个端口,并经合成或抵消后输出,具体过程如下: 1. **直通端**:信号经过路径 A→B,路径长度为 λg/4,输出相位比输入信号滞后 π/2。 2. **耦合端**:信号在主线和支线的交点 A 处分为两路,分别经过路径 A→B→C 和 A→D→C,相位差为 0°(等幅同相),经过叠加从端口③输出,输出信号相位滞后于输入信号 π。 3. **隔离端**:信号途径 A→D 和 A→B→C→D 两条路径,路径长度分别为 λg/4 和 3λg/4,信号相位差为 180°(等幅反相),理想情况下两路信号相互抵消,端口④无输出。 由此可以看出,直通端和耦合端的输出信号存在90°相位差,而隔离端理论上没有输出信号。 ##### 2.2 关键参数 - **耦合度(Coupling)**:定义为输入端口的输入功率P1与耦合端口的输出功率P3的比值,单位为dB。耦合度越大表示耦合强度越弱,当耦合度为3dB时,耦合端的输出功率为输入功率的一半。 - **方向性系数(D)**:用于衡量直通端和耦合端之间的相位差异。 - **隔离度(Isolation)**:定义为输入功率P1与隔离端输出功率P4的比值。理想状态下,隔离端无信号输出,但在实际应用中由于信号反射,隔离端仍会有少量功率输出。因此,在耦合器设计过程中,需尽可能减小隔离端的输出功率,以提高方向性和耦合度。 #### 三、原理图及仿真分析 根据设计要求,当Z2 = 100Ω时,Z1 = 2 * Z2 = 70.7Ω。使用微带线工具(TXLine)来计算微带线的宽度和长度。随着阻抗的增加,微带线会变得更窄更长。 ##### 3.1 原理图与Layout结构 - **原理图**:包含四个端口,分别代表输入端、直通端、耦合端和隔离端。 - **Layout结构结果图**:显示了微带线的具体布局和连接方式。 ##### 3.2 损耗分析 - **损耗**:-3dB - **隔离度**:-58dB 为了优化性能,需要通过调整四分之一波长的长度来调节谐振频率的偏移,并通过调整微带线宽度来控制损耗。如果S21和S31的损耗相差较大,会导致效率降低。因此,应尽量使S21和S31接近-3dB且等功分。如果不等功分,可以通过增大宽度来增大某一路的损耗,从而达到平衡。 通过对AWR仿真分支线定向耦合器的设计和分析,我们可以深入了解该器件的工作原理、关键参数及其对性能的影响,这对于微波无源器件的设计和优化具有重要的参考价值。
2025-06-30 18:35:35 223KB
1
基于线控转向技术的CarSim与Simulink联合仿真模型研究:涵盖增益传动比模块与电机控制策略等元素的详细解析与应用指南,线控转向CarSim与Simulink联合仿真模型。 模型包括定横摆角速度增益变传动比模块、永磁同步电机FOC控制策略模型以及CarSim输入、输出Cpar文件等。 该模型仅供参考使用 ,线控转向; CarSim; Simulink联合仿真模型; 定横摆角速度增益; 传动比模块; 永磁同步电机FOC控制策略模型; CarSim输入输出; Cpar文件。,线控转向CarSim与Simulink联合仿真模型:增益传动与电机控制整合
2025-06-27 22:55:12 498KB
1
三菱伺服电机编码器ID修改器 支持三菱伺服电机J2 J2S J3 J4系列所有电机 独立系统,配硬件驱动程序及应用软件,送编码器数据包,带线做好常用四种编码器插头。 附教程,包教包会 功能支持读写ID,直接读取、存储备份、写入编码器数据。 实时读取编码器绝对位置,支持调零。 三菱伺服电机编码器ID修改器是一种专门针对三菱伺服电机J2、J2S、J3、J4系列电机的工具,它可以实现编码器ID的读写操作,支持读取、存储、备份和写入编码器数据。这款设备独立于系统运行,配备了硬件驱动程序和应用软件,同时还提供了一套编码器数据包和四种常用编码器插头,这些插头已经配线完毕,方便用户直接使用。除此之外,该修改器还附带了一本详尽的教程,确保用户能够完全掌握其使用方法。 该编码器ID修改器的功能不仅仅局限于读取ID,它还能实时读取编码器的绝对位置,并提供调零的功能,这在工业自动化领域中具有重要的应用价值。通过调整编码器的零点,可以确保电机控制系统中的精确位置反馈,这对于提高设备的运行效率和精确性至关重要。 该工具的设计理念是为了简化电机维护和调试过程,避免在编码器出现故障或者需要更换时,必须重新对编码器ID进行设置的麻烦,从而降低停机时间,提高生产效率。其直接读取和存储编码器数据的能力,也使得数据备份和恢复变得简单快捷,这在生产线上是非常有必要的。 在工业自动化领域,对伺服电机的精确控制是至关重要的。三菱伺服电机作为该领域内的重要组成部分,其稳定性和精确性直接关系到整个生产过程的效率和质量。编码器作为伺服电机反馈系统中的关键部件,负责将电机轴的旋转位置转换为电信号,从而让控制系统了解电机的确切位置和速度。因此,能够方便快捷地对编码器进行维护和调整,对于保障整个生产流程的顺畅运行具有十分重要的意义。 该修改器的设计初衷就是为了提供一种高效、可靠的解决方案,帮助工程师和技术人员在维护和调整编码器时更加便捷。它能够帮助他们节省时间,减少可能出现的错误,并且提高整个生产系统的稳定性。在实际应用中,这种设备可以帮助企业减少因设备故障导致的生产停滞,减少维修成本,并且提高最终产品的质量。 这款编码器ID修改器还具有一定的可扩展性,可以随着技术的进步进行升级,以适应新的编码器型号和工业自动化的发展需求。这种灵活性确保了它不仅在当下有着广泛的应用价值,在未来也会继续发挥重要作用。
2025-06-25 22:21:05 7.08MB paas
1
本人利用业余时间,综合了现有的线切割插件优点和缺点,开发了一款线切割cad插件,支持一键生成切割路径,一键生成3b代码,一键模拟切割路径,一键添加自定义暂停点,一键线切割报价,等几十个功能,希望大家能够喜欢,注:本插件支持Acad2010-2024 线切割加工是通过数控机床利用连续移动的细金属丝(称为电极丝)对工件进行切割的加工方法。这项技术广泛应用于金属加工领域,尤其是模具制造业、航空航天、汽车工业以及精密零件加工行业。随着计算机辅助设计(CAD)技术的普及,线切割加工也逐渐实现了自动化、智能化。 在CAD软件中集成线切割功能的插件,可以极大地提高工程师设计和加工的效率。本文介绍的免费线切割CAD插件便是一个突出的例子。该插件集成了线切割所需的一系列功能,包括路径生成、3B代码输出、模拟切割、自定义暂停点设置以及报价计算等。 路径生成是线切割加工中至关重要的一步。插件能够支持一键生成切割路径,意味着工程师可以快速地将CAD设计图转化为机床能够理解的指令,省去了手动编程的时间和潜在错误。这不仅提高了生产效率,也保证了加工的精度。 3B代码是线切割加工中常用的编程语言,它控制机床的动作指令,包括线性、圆弧切割等。一键生成3B代码的功能为工程师节省了大量时间,避免了复杂的编程过程。此外,模拟切割路径让工程师可以在加工前预览实际的切割效果,确保无误后才开始实际加工,避免了材料和时间的浪费。 在一些加工过程中,可能需要在特定点进行暂停,比如更换材料、调整工件或进行特殊加工。一键添加自定义暂停点功能使得这项操作变得简单而灵活,满足了个性化加工需求。 线切割报价是衡量成本效益的重要因素。通过一键线切割报价功能,工程师可以快速估算出加工成本,为报价提供直接的数据支持。这不仅加快了报价过程,也提高了报价的准确性。 该插件支持从AutoCAD 2010到AutoCAD 2024的版本,这意味着它覆盖了过去十余年的主要CAD软件版本,具有很好的兼容性和广泛的适用性。插件的广泛支持保证了它能够在不同的工作环境中使用,不管用户的CAD软件版本如何,都能够体验到插件带来的便捷。 值得一提的是,该插件是开发者利用业余时间开发的。这体现了开源精神和工程师之间的互助分享精神,推动了整个行业的技术进步。开发者还将这款插件免费提供给公众使用,使其价值进一步放大,为线切割加工行业的发展贡献了自己的力量。 该免费线切割CAD插件通过集成一系列自动化、智能化的功能,极大地方便了工程师的日常工作,提高了工作效率和加工质量,同时也降低了成本和错误率。它的出现对于线切割加工行业来说无疑是一个福音,有望推动行业的进一步发展和技术创新。
2025-06-24 21:26:17 10.71MB 线切割加工 cad插件
1