MobileNetV3的PyTorch实现这是MobileNetV3架构的PyTorch实现,如论文Searching MobileNetV3中所述。 一些细节可能与原始论文有所不同,欢迎讨论MobileNetV3的PyTorch实现。这是论文Searching MobileNetV3中描述的MobileNetV3体系结构的PyTorch实现。 一些细节可能与原始论文有所不同,欢迎讨论并帮助我解决。 [NEW]小版本mobilenet-v3的预训练模型在线,准确性达到与纸张相同的水平。 [NEW]该文件于5月17日更新,因此我为此更新了代码,但仍然存在一些错误。 [NEW]我在全局AV之前删除了SE
2023-03-03 20:17:12 8KB Python Deep Learning
1
高效Net-Lite火炬 Google的Pytorch实现。 提供imagenet预训练模型。 在EfficientNet-Lite中,所有的SE模块均被删除,所有的交换层都被ReLU6取代。 对于边缘设备,它比EfficientNet-B系列更友好。 型号详情: 模型 参量 MAdds Top1 Acc(官方) Top1 Acc(此回购) 前5名 efficiencynet-lite0 470万 407M 75.1% 71.73% 90.17% efficiencynet-lite1 540万 631M 76.7% 74.71% 92.01% efficiencynet-lite2 610万 899M 77.6% 77.14% 93.54% efficiencynet-lite3 820万 1.44B 79.8% 78.91% 94.37
2022-07-19 15:03:07 18KB Python
1
Res2Net 论文正式实现 我们的论文被IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI)接受。 更新 2020.10.20 PaddlePaddle版本Res2Net达到85.13%top-1 acc。 在ImageNet上: 。 2020.8.21发布了使用Res2Net进行检测和分割的在线演示: ://mc.nankai.edu.cn/res2net-det 2020.7.29在ImageNet上发布Res2Net的培训代码 (仅用于非商业用途) 2020.6.1 Res2Net现在位于新的深度学习框架的官方模型动物园中。 2020.5.21 Res2Net现在是MMDetection v2框架中的基本骨干之一。 结合使用MMDetection v2和Res2Net,可以以更少的计
2021-10-22 14:01:46 39KB backbone pytorch multi-scale res2net
1
mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_192_no_top.h5,mobilenetv2 tf.keras预训练模型,可用于迁移学习。
2021-09-09 19:56:25 8.97MB mobilenetv2 迁移学习 imagenet预训练模型
1