贝叶斯超参数优化库hyperopt安装包及依赖库,可利用pip离线安装 实现基于TPE的贝叶斯优化,不支持基于高斯过程的贝叶斯优化
2022-09-05 00:26:32 49.59MB 文档资料 超参数优化
1
Hyperopt-sklearn是基于scikit-learn项目的一个子集,其全称是:Hyper-parameter optimization for scikit-learn,即针对scikit-learn项目的超级参数优化工具。由于scikit-learn是基于Python的机器学习开源框架,因此Hyperopt-sklearn也基于Python语言。Hyperopt-sklearn的文档称:对于开发者而言,针对不同的训练数据挑选一个合适的分类器(classifier)通常是困难的。而且即使选好了分类器,后面的参数调试过程也相当乏味和耗时。更严重的是,还有许多情况是开发者好不容易调试好了选定的分类器,却发现一开始的选择本身就是错误的,这本身就浪费了大量的精力和时间。针对该问题,Hyperopt-sklearn提供了一种解决方案。Hyperopt-sklearn支持各种不同的搜索算法(包括随机搜索、Tree of Parzen Estimators、Annealing等),可以搜索所有支持的分类器(KNeightborsClassifier、KNeightborsClassifier、SGDClassifier等)或者在给定的分类器下搜索所有可能的参数配置,并评估最优选择。并且Hyperopt-sklearn还支持多种预处理流程,包括TfidfVectorizer,Normalzier和OneHotEncoder等。那么Hyperopt-sklearn的实际效果究竟如何?下表分别展示了使用scikit-learn默认参数和Hyperopt-sklearn优化参数运行的分类器的F-score分数,数据源来自20个不同的新闻组稿件。可以看到,经过优化的分类器的平均得分都要高于默认参数的情况。另外,Hyperopt-sklearn的编码量也很小,并且维护团队还提供了丰富的参考样例。 标签:Hyperopt
2022-07-25 15:45:32 57KB 开源项目
1
基于LSTM的流量预测 该项目旨在通过的前端,将LSTM用于流量预测。 超参数优化用于查找网络的最佳参数集。 用法 跑步: pip install -r requirements.txt 然后编辑以便它使用您自己的网络参数。 它将尝试将超参数结果存储在mongodb中。 您可以使用查看它们。 请记住,这仅用于实验,不适用于生产。 使用以下命令运行: python main.pymain.py CSV格式应为以下格式: timestamp,16,17,18,19,20,21 2011-12-31 23:55:00,4,6,8,13,3,0 2012-01-01 00:00:00,
2021-12-06 17:31:55 20KB experimental lstm hyperopt traffic-prediction
1
钻石无处不在 介绍 在世界上,钻石因其美观和特性而成为人们最垂涎的对象。 他们昂贵的采购和稀缺性使钻石产品在市场上具有很高的价值。 但是,可以根据钻石的特性计算出该值吗? 在这个项目中,我们打算使用监督学习来创建预测模型,该模型使用一系列钻石变量来预测其他钻石的市场价值。 过程 打扫 清理过程首先检查数据集。 发现存在分类变量和数字变量的地方。 还观察到没有空值。 消除了无用的列,并对分类变量进行了编码,我们选择按序数形式对它们进行分类,因为存在分类顺序,因此考虑到顺序,将分类值替换为数值。 造型 使用的模型是线性回归,使用HyperOpt选择超参数的随机森林Reggresor,以及由Pycaret选择的第三个模型,最终将成为LightGradientBoostingMachine。 使用的度量是“ mean_square_error”。 数据 该项目使用的数据数据是从以下获得的
2021-12-01 09:01:59 1.22MB JupyterNotebook
1
Hyperopt-附件资源
2021-11-12 19:07:07 106B
1