GNN、pytorch-geometric 四个包 torch_cluster scatter sparse spline_conv
2023-04-07 17:31:07 4.15MB GNN
1
用于学习分子图的分层消息间传递 这是用于学习分子图的分层消息间传递的 PyTorch 实现,如我们的论文中所述: Matthias Fey、Jan-Gin Yuen、Frank Weichert:(GRL+ 2020) 要求 (>=1.4.0) (>=1.5.0) (>=1.1.0) 实验 可以通过以下方式运行实验: $ python train_zinc_subset.py $ python train_zinc_full.py $ python train_hiv.py $ python train_muv.py $ python train_tox21.py $ python train_ogbhiv.py $ python train_ogbpcba.py 引用 如果您在自己的工作中使用此代码,请引用: @inproceedings{Fey/etal/2020,
1
TF图神经网络样本 该存储库是代码版本,对应于介绍具有特征线性调制的图神经网络(GNN)的文章( )。 在本文中,讨论了许多GNN架构: 门控图神经网络(GGNN)( )。 关系图卷积网络(RGCN)( )。 关系图注意力网络(RGAT)-图注意力网络( )对几种边缘类型的概括。 关系图同构网络(RGIN)-图同构网络( )对几种边缘类型的概括。 带有边缘MLP的图形神经网络(GNN-Edge-MLP)-RGCN的一种变体,其中边缘上的消息是使用完整MLP而非单个层来计算的。 关系图动态卷积网络(RGDCN)-RGCN的新变体,其中动态计算卷积层的权重。 具特征线性调制(GNN-FiLM)的图形神经网络-带有FiLM层的RGCN的新扩展。 本文中提出的结果基于该存储库中提供的模型和任务的实现。 此代码已在使用TensorFlow 1.13.1的Python 3.
2023-03-11 09:22:01 25.7MB Python
1
想要使用GNN简单建立分类模型预测阿尔兹海默症的人
2023-02-23 10:50:08 116KB 深度学习 分类 人工智能 机器学习
1
Extended-SimGNN-master源代码(SimGNN方法代码,精华版,可直接运行)
2023-02-14 15:16:57 770KB GNN GCN 图相似度计算 深度学习
1
这是关于图神经网络入门学习的一个简单资料。仅学习使用。
2022-12-28 09:29:01 1.41MB 人工智能 深度学习 图神经网络 GNN
1
PART ONE/为什么需要图神经网络 PART TWO/什么是图神经网络(包括图的基本知识,及基本GNN的操作) PART THREE/图神经网络的变体(图神经网络的3个变体,图卷积神经网络(又可分为基于空间域的图卷积神经网络和基于频域的图卷积神经网络),基于注意力的图神经网络,基于自编码器的图神经网络)。包括DCNN(Diffusion-Convolution Neural Network、NN4G(Neural Networks for Graph)、MPNN:Message Passing Neural Network、GAT (Graph Attention Network)、图自编码器(graph autoencoder,GAE)、变分图自编码器(variational graph autoencoder,VGAE) PART FOUR/应用,在自然语言处理方面的应用,在计算机视觉方面的应用,在推荐系统方面的应用,在预测问题方面的应用
2022-12-19 16:28:05 12.69MB 图神经网络 GNN DCNN GAE
1
DGraphFin-金融欺诈数据集
2022-12-01 17:27:44 143.51MB 金融欺诈 数据集 GNN
1
基于空间感知图神经网络(GNN)和跨级分子轮廓预测(Python完整源码和数据) 基于空间感知图神经网络(GNN)和跨级分子轮廓预测(Python完整源码和数据) 基于空间感知图神经网络(GNN)和跨级分子轮廓预测(Python完整源码和数据)
通过SR-GNN算法进行挖掘商品图的时序商品推荐——数据集通过SR-GNN算法进行挖掘商品图的时序商品推荐——数据集通过SR-GNN算法进行挖掘商品图的时序商品推荐——数据集通过SR-GNN算法进行挖掘商品图的时序商品推荐——数据集
2022-11-26 18:27:11 6.72MB 机器学习 深度学习