使用CNN的音乐流派分类
2022-12-02 16:26:14 2.45MB Python
1
音乐流派分类 使用1D和2D卷积神经网络比较使用频谱图输入和原始音频输入的音乐流派分类。 在此实验中,仅使用每个音频的前20秒。 每个音频样本被分为2秒音频的10个部分。 先决条件 - Python 2 - Numpy - Matplotlib - Scikit-learn - Scikit-plot - Keras - Tensorflow - Kapre - Librosa - ffmpeg 数据集 乔治·扎纳塔基斯(George Tzanetakis)设定的音乐流派数据。 数据集包含1000个音轨,每个音轨长30秒。 它包含10个流派,每个流派由100首曲目代表。 结果(10个纪元) 混淆矩阵 ROC曲线 测试精度 带一维CNN的原始音频输入 0.31 一维CNN的频谱图输入 0.7372 二维CNN的频谱图输入 0.686 参考: Dieleman,Sander和B
2022-03-23 15:04:32 682KB JupyterNotebook
1
音乐流派分类 主题-对音乐所属的流派类型进行分类。 流派包括布鲁斯,古典,乡村,迪斯科,嘻哈,爵士,金属,流行,雷鬼,摇滚。 数据集 数据集为GTZAN。 数据集来自 。 它包含10个班级中的每个班级的100首音乐。 方法 我们将首先将给定的.au音频文件转换为.wav文件。 然后,我们将.wav文件转换为频谱图,然后使用cnn将其分类为不同的组。 通常,频谱图看起来像这样 混淆矩阵 损耗曲线 该模型经过了100个时期的训练,我们可以看到那里存在一些轻微的过拟合现象。 我们选择了能够提供最佳验证精度的模型。 该模型在100个样本中进行了验证,其中10个类别中的每个类别有10个样本,并在900个图像中训练了10个类别中的每个类别的90 准确性 我们使用的模型是微调的VGG16模型。 验证准确性约为73%,培训准确性约为88%。 仅考虑1000个样本,这是一个很好的准确性。 笔记 接受任何进
2021-12-27 20:10:44 1.74GB music cnn gtzan-dataset genre-classification
1
音乐流派 所有常规音乐类型的JSON列表 我们为图书馆建设者提供高达900多种类型的流派! 安装安装 CDN < script src =" ttps://unpkg.com/musicgenres-json@latest/dist/index.js " > </ script > NPM npm install musicgenres-json --save # Or use Yarn yarn add musicgenres-json 导入和使用 浏览器 < script > const genres = new MusicGenres ( ) console . log ( genres . get ( ) ) </ script > ES6 import MusicGenres from 'musicgenres-json' const genres =
1