从DDPM到score-based generative models再到Consistency Models的介绍,对于扩散模型的全面理解有一定的帮助。
2024-06-13 12:21:17 51.62MB 扩散模型 人工智能
1
来自新加坡NUS图神经网络大牛Xavier Bresson教授关于生成模型VAE与GAN的总结PPT,全面概括了生成式模型VAE与GAN的应用,非常值得关注! Variational autoencoders (VAE) Lab on VAE Generative Adversarial Networks (GAN) Labs on GAN Conclusion
2022-04-07 12:05:56 11.43MB 神经网络 机器学习 深度学习 人工智能
NIPS'14-SSL 使用深度生成模型重现我们的 NIPS 2014 论文关于半监督学习 (SSL) 的一些关键结果的代码。 DP Kingma、DJ Rezende、S. Mohamed、M. Welling 具有深度生成模型的半监督学习神经信息处理系统的进展 27 ( NIPS 2014 ),蒙特利尔 使用此代码进行研究时,请引用本文。 警告:此代码远未完全注释。 对于问题和错误报告,请发送电子邮件至dpkingma[at]gmail.com 。 先决条件 确保安装了以下最新版本: Python(2.7 或更高版本) Numpy(例如pip install numpy ) Theano(例如pip install Theano ) 在 Theano 配置的[global]部分(通常是~/.theanorc )中设置floatX = float32 。 或者,您可以在
2022-02-20 17:46:43 152.14MB Python
1
StarGAN-官方PyTorch实施 *****新增功能:可从获得StarGAN v2 ***** 该存储库提供了以下论文的官方PyTorch实现: StarGAN:用于多域图像到图像翻译的统一生成对抗网络1,2, 1,2, 2,3,2,2,4, 1,2- 1韩国大学, 2 Clova AI研究,NAVER Corp. 3香港科技大学新泽西学院4 摘要:最近的研究表明,在两个领域的图像到图像翻译中取得了巨大的成功。 但是,由于应为每对图像域分别构建不同的模型,因此现有方法在处理两个以上域时具有有限的可伸缩性和鲁棒性。 为了解决此限制,我们提出了StarGAN,这是一种新颖且可扩展的方法,可以仅使用一个模型就可以对多个域执行图像到图像的转换。 StarGAN的这种统一模型架构允许在单个网络中同时训练具有不同域的多个数据集。 与现有模型相比,StarGAN的翻译图像质量更高,并且具有
1
颜色熵matlab代码文本生成模型LSTM-CNN-HMM 文本的生成模型(a)在这个问题中,我们试图建立一个生成模型,以模仿英国著名数学家,哲学家,多产作家和政治活动家贝特朗·罗素的写作风格。 (b)从Project Gutenberg下载以下书籍。 org / ebooks / author / 355的文本格式:i。 ii。 iii。 iv。 哲学问题分析心灵的神秘主义和逻辑以及其他论文我们对作为哲学科学方法领域的外部世界的了解古腾堡(Gutenberg)在每本书中都添加了标准的页眉和页脚,但这不是原文的一部分。 在文本编辑器中打开文件,然后删除页眉和页脚。 页眉是显而易见的,并以以下文本结尾:***此项目的开始Gutenberg EBOOK询问含义和真相***页脚是以下文本行之后的所有文本:THE END拥有一个更好的模型,强烈建议您从国会图书馆下载以下书籍,并将其转换为文本文件:i。 西方哲学史ii。 物质分析iii。 对意义和真理的探究尝试只使用书中的文字,并在文字前后扔掉不需要的文字,尽管在大型语料库中,这些文字被认为是杂音,不会造成大问题。 1个 (c)LSTM:训练L
2021-08-28 21:16:41 3.31MB 系统开源
1
微软亚洲研究院关于生成模型的课程讲义,内容如下 • Overview • Plain Generative Models • Autoregressive Models • Latent Variable Models • Deterministic Generative Models • Generative Adversarial Nets • Flow-Based Generative Models • Bayesian Generative Models • Bayesian Inference (variational inference, MCMC) • Bayesian Networks • Topic Models (LDA, LightLDA, sLDA) • Deep Bayesian Models (VAE) • Markov Random Fields (Boltzmann machines, deep energy-based models)
2021-08-11 14:09:24 5.94MB AI 生成模型
1
StarGAN v2-官方PyTorch实施 StarGAN v2:多个域的多样化图像合成*,* *,*,在CVPR 2020中。(*表示相等的贡献) 论文: : 视频: : 摘要:良好的图像到图像转换模型应学习不同视觉域之间的映射,同时满足以下属性:1)生成图像的多样性和2)在多个域上的可伸缩性。 现有方法解决了其中一个问题,即对于所有域而言,其多样性有限或具有多个模型。 我们提出了StarGAN v2,这是一个可以同时解决这两个问题的框架,并且在基线之上显示出明显改善的结果。 在CelebA-HQ和新的动物面Kong数据集(AFHQ)上进行的实验验证了我们在视觉质量,多样性和可伸缩性方面的优越性。 为了更好地评估图像到图像的翻译模型,我们发布了AFHQ,具有较大域间和域内差异的高质量动物脸。 代码,预训练模型和数据集可在clovaai / stargan-v2中找到。 宣
1
计算机视觉Github开源论文
2021-06-03 09:09:07 668KB 计算机视觉
1
Generative models in Tensorflow 2 Tim Sainburg (PhD Candidate, UCSD, Gentner Laboratory) This is a small project to implement a number of generative models in Tensorflow 2. Layers and optimizers use Keras. The models are implemented for two datasets: fashion MNIST, and NSYNTH. Networks were written with the goal of being as simple and consistent as possible while still being readable. Because each network is self contained within the notebook, they should be easily run in a colab session.
2021-05-10 18:06:24 3.39MB Tensorflow
1