内容概要:这个压缩包里面包括PSO_GA混合算法主程序,和其调用simulink参数的子程序,以及其使用方法的文件说明。其程序又丰富的中文代码注释,帮助你快速掌握代码思想,了解代码时如何运行的。 目标:由于PSO算法本身的缺陷,其存在容易出现早熟收敛、后期迭代效率不高、搜索精度不高的问题,此资源在线性递减惯性权重PSO算法的基础上,与GA遗传算法相结合,针对PSO易陷入局部最优,通过采用GA杂交变异的思想,增加了粒子的多样性,跳出局部最优,增强混合算法的全局搜索能力,提高搜索精度。 适用人群:所以此资源适用于有进一步想提高PSO算法迭代能力的小伙伴,而能搜索到的资源又极少,这里给出一份参考答案,有需要的可以自行下载。 其他说明:不懂如何使用的请积极找我联系,不要怕麻烦,我看到信息一定会第一时间回复你的。(๑•̀ㅂ•́)و✧
2025-05-16 16:34:07 6KB MATLAB
1
GA(遗传算法)优化BP(反向传播)神经网络预测是一种将遗传算法与BP神经网络结合的优化方法,旨在提高神经网络的预测性能。BP神经网络通过反向传播算法调整权重和偏置,以最小化误差,但该算法容易陷入局部最优解,特别是在复杂的非线性问题中。遗传算法是一种模拟自然选择和遗传学原理的优化算法,通过选择、交叉、变异等操作在解空间中搜索最优解。 ### 结合过程: 1. **编码与初始化**:将BP神经网络的权重和偏置参数编码成染色体(即遗传算法的个体),初始化一群个体,构成初始种群。 2. **适应度评估**:使用BP神经网络进行预测,计算每个个体的适应度,通常是通过误差值(如均方误差)来衡量。 3. **选择、交叉与变异**:通过选择操作保留适应度高的个体,交叉操作生成新个体,并通过变异操作引入新的可能解,形成新的种群。 4. **进化与优化**:迭代进行选择、交叉、变异操作,不断优化种群中的个体,直到满足预定的停止准则,如达到最大迭代次数或误差达到某一阈值。 5. **训练优化**:最终选择适应度最好的个体作为BP神经网络的权重和偏置,完成网络的训练。
1
内容概要:本文介绍了如何使用遗传算法(GA)、灰狼优化算法(GWO)和麻雀搜索算法(SSA)优化支持向量机回归(SVR)模型,并提供了详细的Matlab代码实现。文章涵盖了数据准备、参数优化、模型训练、预测及结果可视化的全过程。通过对三种优化算法的性能对比,展示了各自的优势和特点。具体步骤包括:读取Excel数据,划分训练集和测试集,定义优化参数范围,使用相应优化算法找到最佳参数,训练SVR模型,进行预测并计算误差指标如MSE、MAE、RMSE和R²。最终通过图表形式直观呈现不同算法的预测效果和误差对比。 适合人群:具有一定编程基础,熟悉Matlab编程环境,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要提高支持向量机回归模型预测精度的应用场景,特别是那些希望通过引入优化算法改善模型性能的研究项目。目标是在多个候选优化算法中选择最适合特定任务的最佳方案。 其他说明:文中提供的代码可以直接应用于实际数据集,只需替换相应的数据文件路径即可。此外,强调了数据归一化的重要性,指出这是确保模型正常工作的关键步骤之一。
2025-04-25 16:49:35 894KB
1
多算法优化下的支持向量机回归预测模型对比分析——基于GA-SVR、GWO-SVR、SSA-SVR的实证研究,基于多钟算法优化支持向量机回归预测的对比研究:GA-SVR、GWO-SVR与SSA-SVR的实践与性能评估——Matlab程序化实现及可视化分析,多钟算法优化支持向量机回归预测对比。 GA-SVR GWO-SVR SSA-SVR 程序内注释详细直接替数据就可以使用。 程序语言为matlab。 多输入单输出,Excel数据,替方便 程序直接运行可以出训练集预测图、测试集预测图,迭代优化图等。 计算误差各项指标MSE,MAE,RMSE,R^2结果可视化 ,关键词为: 算法优化; 支持向量机回归预测; 对比; GA-SVR; GWO-SVR; SSA-SVR; MATLAB程序语言; Excel数据; 训练集预测图; 测试集预测图; 迭代优化图; 计算误差; MSE; MAE; RMSE; R^2结果可视化。,基于多算法优化的支持向量机回归预测对比程序
2025-04-21 09:49:11 2.04MB csrf
1
Wyse_USB_Firmware_Tool_v1.10_GA.exe 刷机工具 英文版 可备份 可升级
2025-04-17 09:47:45 10.23MB
1
Gui Guider 1.8.1-GA版本是一款图形用户界面(GUI)向导程序,旨在为LVGL(Light and Versatile Graphics Library)用户提供一个便捷的安装和配置体验。LVGL是一个开源的嵌入式图形库,广泛用于各种微控制器和显示设备中,用于构建高性能且资源占用低的图形用户界面。该库支持多种操作系统,包括但不限于裸机、RTOS和Linux。 通过安装Gui Guider 1.8.1-GA,开发者能够利用其提供的直观界面来选择和配置LVGL库的各种组件。该安装程序可能包含了一个图形化的用户界面,允许用户轻松选择所需的功能模块,自定义主题以及进行一系列的设置,而无需深入到复杂的源代码中进行配置。 Gui Guider 1.8.1-GA的推出,极大地简化了LVGL库的安装和集成过程,尤其是对于不熟悉命令行操作的用户。这种图形界面的引导方式,使得开发者能够快速上手LVGL库,并开始他们的嵌入式GUI开发之旅。安装包中的文件名“Gui-Guider-Setup-1.8.1-GA.exe”表明这是一个可执行安装程序,专为Windows操作系统设计,用户只需双击运行该文件即可启动安装流程。 在LVGL库的众多用户中,尤其是那些寻求快速创建响应式和可定制的图形用户界面的物联网(IoT)、消费电子产品和工业控制系统的开发者,对Gui Guider的需求尤为迫切。由于这类用户往往需要在短时间内搭建界面原型,Gui Guider的出现填补了这一空白。 此外,Gui Guider 1.8.1-GA的出现,也体现了嵌入式软件工具向更加用户友好的方向发展的趋势。随着图形化工具的普及,开发者可以更加集中精力于产品设计和用户体验的提升,而不必在搭建开发环境上耗费过多的时间和精力。 从版本号1.8.1-GA来看,这个版本应该是经过一段时间的测试后稳定发布的版本。通常在软件版本号中,“GA”代表“General Availability”,意味着软件已经准备好面向所有用户公开发布,并且已经经历了充分的测试以确保稳定性和可用性。因此,用户可以期待该安装包不仅功能全面,而且运行稳定,是一个值得信赖的LVGL配置解决方案。 Gui Guider 1.8.1-GA安装包的推出,不仅简化了LVGL库的安装和配置流程,降低了嵌入式GUI开发的门槛,而且也表明了该领域工具发展的成熟度和用户需求的深入理解。开发者可以借此更加便捷地构建丰富而高效的用户界面,加速产品的上市时间。
2025-04-15 11:21:08 418.61MB LVGL UI
1
在新能源技术领域,光伏和风电作为清洁可再生能源的代表,其发电效率的优化一直是研究热点。最大功率点跟踪(MPPT)技术是一种提高光伏发电系统能量转换效率的关键技术,它的基本原理是通过实时调整光伏阵列的工作点,使其始终在最大功率点工作。MPPT技术的核心在于算法的选择与实现,遗传算法(GA)和粒子群优化(PSO)算法是两种在MPPT控制策略中广泛应用的智能优化算法。 遗传算法(GA)是一种模拟生物进化过程的搜索算法,它通过选择、交叉和变异等操作,在问题的解空间中进行搜索,以寻找最优解。在MPPT的应用中,遗传算法能够对光伏系统的输出特性进行全局搜索,从而找到更接近最大功率点的占空比设置。与传统的爬山法等局部搜索策略相比,遗传算法能够在更广泛的搜索空间内进行优化,避免陷入局部最优。 粒子群优化(PSO)算法是一种群体智能优化算法,灵感来源于鸟群捕食的行为。在PSO算法中,每个粒子代表问题空间中的一个潜在解,粒子们通过相互之间的信息共享,在解空间中协同搜索最优解。在MPPT控制策略中,粒子群优化算法能快速追踪环境变化下的最大功率点,并且算法实现简单,参数调整方便,适合于实时动态变化的系统。 在线优化有源程序的实现,是指将MPPT控制策略编程实现,并通过仿真软件如Matlab/Simulink进行模拟,以验证算法的有效性。Matlab/Simulink作为一种强大的数学计算和系统仿真平台,提供了丰富的工具箱支持电力电子和控制系统的建模、仿真和分析。基于Matlab/Simulink开发MPPT控制策略,可以方便地进行算法设计和验证,提高了研究与开发的效率。 在文件名称列表中,“基于GA和PSO进行MPPT控制”和“Mppt-system-main”暗示了文件内容主要围绕遗传算法和粒子群优化算法在MPPT控制中的应用。文件可能包含GA和PSO算法的具体实现代码、MPPT控制器的设计与仿真模型以及优化结果的分析。参考文献的完整性则表明开发者不仅提供了程序和仿真模型,还提供了详细的理论依据和文献支持,有助于理解算法原理和进一步的学术研究。 该文件内容涉及了智能优化算法在新能源领域的应用、基于Matlab/Simulink的仿真技术以及MPPT控制策略的详细实现。这些内容对于从事新能源发电系统研究与开发的专业人员具有很高的实用价值和参考意义。
2025-04-11 21:47:00 57.76MB matlab MPPT simulink
1
基于GA-BP多变量时序预测的优化算法模型——代码文注释清晰,高质量多评价指标展示程序,GA-BP神经网络优化多变量时序预测模型:基于遗传算法的BP神经网络多维时间序列预测程序,GA-BP多变量时序预测,基于遗传算法(GA)优化BP神经网络的多维时间序列预测,多输入单输出 程序已经调试好,无需更改代码替数据集即可运行数据为Excel格式。 1、运行环境要求MATLAB版本为2018b及其以上 2、评价指标包括:R2、MAE、MBE、RMSE等,图很多,符合您的需要 3、代码文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,关键词:GA-BP多变量时序预测; 遗传算法优化BP神经网络; 多维时间序列预测; 多输入单输出; MATLAB版本2018b; 评价指标(R2, MAE, MBE, RMSE); 代码文注释清晰; 测试数据集; 新手小白。,基于GA-BP算法的多变量时序预测模型:高注释质量、测试数据集直接可用
2025-04-07 16:40:16 2.42MB
1
内容概要:本文详细介绍了一个利用MATLAB实现的遗传算法(GA)优化BP神经网络的方法,专门面向多输入多输出系统的建模和预测任务。遗传算法以其全局搜索能力解决了BP神经网络容易陷入局部最优的问题,两者结合大大提升了学习速度和精度。文中阐述了BP神经网络和遗传算法的基本原理,并介绍了两者相结合的技术细节及其在MATLAB平台上的实现方式。特别指出的是,在实现过程中遇到了一些技术和理论上的挑战,并通过合理的参数调整和结构优化逐一攻克。 适合人群:具备基本编程技能以及对人工神经网络有一定了解的研究人员、工程师和技术爱好者,特别是关注于复杂系统和大数据分析的专业人士。 使用场景及目标:主要用于需要高效建模及精确预测的复杂多维系统中,比如系统控制、金融数据分析、医学诊断、图像识别等众多行业领域内的问题解决。目的是提高系统的自动化程度,改善预测准确率,并促进更广泛的智能化管理和服务应用。 其他说明:为了帮助读者更好地理解这一过程,文档还提供了详细的模型架构图示和具体的实例编码指导,从数据准备到最终的仿真结果显示全过程。并且强调了项目所具有的创新点,比如自定义参数设定、智能优化初始权重等特性,使得该方案在实际操作中有较强的灵活性和适用性。同时指出未来可以进一步探索更多元化的优化手段和技术融合可能性。
2025-04-05 09:07:05 32KB 遗传算法 BP神经网络 MATLAB 智能优化
1
matlab如何将代码和数据打包GA-AEM源代码存储库 澳大利亚地球科学公司机载电磁学计划 作者:澳大利亚地质科学局的Ross C Brodie(ga.gov.au上的ross.c.brodie) 语言:主要是C ++,一些matlab,一些python 发行版 发行编号20160606 - Added Python 3.x interface for simple forward modelling and derivatives only. - Added Matlab interface for simple forward modelling and derivatives only. - Changed how the PPM normalisation is carried out. Now PPM normalisation is by directional-component-wise with respect to the maximum primary dB/dt or B-field at the receiver for a reference system
2025-03-28 13:47:16 13.79MB 系统开源
1