反事实公平 该存储库具有本文的R和Stan代码: Matt J.Kusner *,Joshua R.Loftus *,Chris Russell *,Ricardo Silva 神经信息处理系统(NIPS),2017年* =作者均分 跑步 安装: 下载:
2023-04-03 19:18:55 4KB R
1
Fairlearn Fairlearn是一个Python软件包,可让人工智能(AI)系统开发人员评估其系统的公平性并减轻任何观察到的不公平问题。 Fairlearn包含缓解算法以及用于模型评估的Jupyter小部件。 除了源代码之外,该存储库还包含Jupyter笔记本,其中包含Fairlearn用法示例。 网站: : 当前的版本 当前的稳定版本可从。 我们当前的版本与0.2或更早的版本有很大的不同。 这些旧版本的用户应访问我们的。 我们所说的公平 人工智能系统可能出于多种原因而表现不公平。 在Fairlearn中,我们定义了AI系统在对人的影响(即危害)方面是否表现出不公平的行为。 我们关注两种危害: 分配危害。 当AI系统扩展或保留机会,资源或信息时,可能会发生这些危害。 一些关键的应用程序是在招聘,入学和贷款方面。 服务质量危害。 服务质量是指即使没有扩展或保留任何机会,资源或信息,系统对于一个人的工作是否也与另一个人的工作是否一样好。 我们遵循被称为“群体公平”的方法,该方法问:哪些群体的个人有遭受伤害的风险? 相关的组需要由数据科学家指定,并且是特定于应用程序的。
2022-07-25 09:24:13 16.28MB machine-learning ai artificial-intelligence fairness
1
Dominant Resource Fairness: Fair Allocation of Multiple Resource
2022-04-11 14:09:04 619KB hadoop Yarn 公平调度算法
1
公平性:衡量R中的算法公平性 套餐概述 fairness R包提供了用于计算不同敏感组之间算法公平性度量的工具。 基于二元分类任务中的模型预测来计算度量。 该软件包还提供了机会来可视化和比较敏感群体之间的其他预测指标。 该软件包包含用于计算常用的公平机器学习指标的函数,例如: 人口平价 比例平价 均等赔率 预测汇率平价 此外,还实现了以下指标: 误报率平价 假负利率平价 精度平价 负预测价值平价 特异性均等 ROC AUC比较 MCC比较 提供了有关使用该软件包的全面教程。 我们建议您阅读本教程,因为与本自述文件相比,本教程包含对公平性软件包的更深入的描述。 您还会在公平找到一个简短的教程: vignette( ' fairness ' ) 安装 您可以通过运行以下命令从安装最新的稳定软件包版本: install.packages( ' fairness ' ) library(
2022-03-03 14:57:30 368KB machine-learning r fairness discrimination
1
AI公平 我发现有关AI公平的笔记,参考资料和材料对我的研究很有帮助,并为我提供了帮助。 阅读清单 博客文章: 博客文章: COMPAS与刑事司法 权衡和不可能的结果 分类,校准,精度,召回率 观测措施的固有局限性 除了观察措施 因果推理 背景资料:Pearl(第1--3章),Pearl(第4.5.3节) 因果公平标准 相似性建模,匹配 测量,取样 博客文章: 无监督学习 法律和政策观点 背景阅读
1
A Survey on Bias and Fairness in Machine Learning
2021-03-12 12:15:34 1.96MB ieee论文
1
New efficient and practical v-fairness (t, n) multi-secret sharing schemes
1