只为小站
首页
域名查询
文件下载
登录
小波去噪在掘进机振动信号处理中的应用
基于小波在时-频两域均能表征信号局部特征的特点,采用小波分解和小波包分解对掘进机三方向振动信号进行分解重构,比较sym4小波,sym5小波和小波包对振动信号的去噪能力,选择sym4对振动信号进行处理,获取掘进机振动信号的特征频率和振动峰值,掘进机截割头的主振频率在2~4 Hz内,振动峰值在11 gn左右。
2025-12-11 16:16:14
253KB
行业研究
1
基于SSA优化变分模态分解的混合储能功率分配策略:vmd、emd与SSA-VMD在风电功率处理中的应用
内容概要:本文介绍了基于SSA(Summarized Square Algorithm)优化的变分模态分解(VMD)在风电功率分配中的应用。传统VMD和EMD方法虽有一定效果,但面对复杂风电功率波动时表现不佳。SSA优化后的VMD(SSAVMD)能更精准地分析风电功率信号的模态分布,提高功率分配精度。文中提出高频功率分配给超级电容、低频功率分配给蓄电池的策略,同时引入了由样本熵、聚合代数和Pearson相关性组成的创新适应值函数,提升了优化过程的科学性和效率。最终,该策略在混合储能系统中展现了显著效果,为可再生能源的发展提供了新思路。 适合人群:从事电力系统、新能源技术研究的专业人士,以及对风电功率分配感兴趣的科研人员。 使用场景及目标:适用于需要优化风电功率分配的混合储能系统,旨在提高风电功率的稳定输出和分配效率,推动可再生能源的进一步发展。 其他说明:该策略不仅理论新颖,而且在实际应用中表现出色,具有广阔的应用前景。未来的研究将继续深化并拓展其应用范围。
2025-11-08 22:40:29
1.01MB
1
基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型(完美复现)matlab代码
程序名称:基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型 实现平台:matlab 代码简介:提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。提出一种经验模态分解 (EMD)、核主成分分析(KPCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的4种环 境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳 性;其次利用KPCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络 对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。附带参考文献。本代码在原文献上进行了改进,采用KPCA代替PCA,进一步提升了预测精度。代码具有一定创新性,且模块化编写,可自由根据需要更改完善模型,如将EMD替换成VMD CEEMD CEEMDAN EEMD等分解算法,对LSTM进一步改善,替换为GRU,BILSTM等。代码注释详细,无
2025-11-04 15:52:19
1.07MB
lstm
matlab
1
MATLAB中实现EMD-KPCA-LSTM、EMD-LSTM和LSTM模型,以进行多变量时间序列预测(包含详细的完整的程序
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01
30KB
MATLAB
LSTM
EMD
KPCA
1
基于EMD-KPCA-LSTM的北半球光伏功率多维时间序列预测MATLAB代码实现
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)和长短期记忆网络(LSTM)的多维时间序列预测MATLAB代码实现。具体应用案例为北半球光伏功率预测,涉及的数据集包含太阳辐射度、气温、气压和大气湿度四个输入特征,以及光伏功率作为输出预测。文档详细介绍了从数据加载与预处理到EMD和KPCA处理,再到LSTM模型训练与预测的具体步骤,并进行了EMD-LSTM、EMD-KPCA-LSTM和纯LSTM模型的对比分析。此外,还强调了代码的注释清晰度和调试便利性,确保用户能够顺利运行和理解整个流程。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对时间序列预测、机器学习和光伏功率预测感兴趣的群体。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的效果,选择最优模型;③ 掌握MATLAB环境下复杂模型的构建和调优方法。 其他说明:代码已验证可行,支持本地EXCEL数据读取,附带详细的“说明”文件帮助用户快速上手。建议用户在实践中结合实际需求调整参数和模型配置,以获得最佳预测效果。
2025-11-01 16:52:20
749KB
1
EMD-KPCA-LSTM在北半球光伏功率预测中的MATLAB代码实现:含LSTM、EMD-LSTM、EMD-KPCA-LSTM模型对比
内容概要:本文档提供了基于经验模态分解(EMD)、核主成分分析(KPCA)与长短期记忆网络(LSTM)的组合模型,用于北半球光伏功率的多维时间序列预测。文档详细介绍了从数据加载与预处理到模型训练与预测的具体步骤,并对比了LSTM、EMD-LSTM和EMD-KPCA-LSTM三种模型的效果。代码支持读取本地EXCEL数据,适用于多种时间序列预测任务,如电力负荷、风速、光伏功率等。文中还强调了代码的注释清晰,便于理解和调试。 适用人群:具备MATLAB编程基础的研究人员和技术人员,特别是从事时间序列预测、能源数据分析领域的专业人士。 使用场景及目标:① 使用EMD、KPCA和LSTM组合模型进行多维时间序列预测;② 对比不同模型的预测效果,选择最优模型;③ 处理和分析光伏功率等时间序列数据。 其他说明:代码已验证,确保原始程序运行正常。建议在运行前仔细阅读程序包中的‘说明’文件,了解数据准备、模型参数设置及运行环境要求。
2025-10-28 11:11:56
713KB
1
小波阈值去噪方法完整代码
本资源提供小波阈值去噪的完整 Python 实现,支持硬阈值、软阈值和 Garrote 阈值三种去噪策略,可自定义小波基类型、分解层数和阈值计算方式。代码包含噪声标准差估计、边界效应处理等细节,并通过生成含噪正弦波信号测试不同阈值方法的去噪效果。可视化部分将软阈值和 Garrote 阈值结果分开绘制,便于对比分析。适用于振动信号、生物医学信号等领域的噪声去除,可作为信号处理预处理模块直接集成到项目中。
2025-07-03 16:21:41
1KB
python
信号处理
小波阈值
小波降噪
1
MATLAB中基于EMD算法的信号处理及故障诊断应用
内容概要:本文详细介绍了经验模态分解(EMD)算法及其在MATLAB 2018版中的具体应用。EMD是一种用于处理非平稳信号的强大工具,能够将复杂信号分解为多个本征模态函数(IMF)。文中通过具体的代码实例展示了如何读取Excel数据进行EMD分解,并通过可视化手段展示分解结果。同时,文章讨论了如何利用均方根误差(RMSE)评估分解效果,并提供了几种优化技巧,如选择适当的插值方法、处理高频噪声以及使用并行计算加速处理速度。此外,还分享了一些实战经验和应用场景,如机械故障诊断和金融数据分析。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员、工程师,特别是在信号处理、故障诊断等领域工作的专业人士。 使用场景及目标:适用于需要处理非平稳信号的场合,如机械设备故障检测、金融数据分析等。主要目标是帮助读者掌握EMD的基本原理和实现方法,提高信号处理和故障诊断的准确性。 其他说明:文中提供的代码可以直接应用于实际项目中,但需要注意数据格式和版本兼容性等问题。对于初学者,建议逐步理解和修改代码,确保每一步都符合预期。
2025-06-02 15:20:33
2.57MB
1
EMD-GWO-SVR对时间序列进行经验模态分解后用灰狼算法优化支持向量回归预测
《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。
2024-08-08 14:48:56
1.11MB
1
matlab 小波去噪
matlab程序,基于bayesshrink visuShink阈值的小波去噪方法代码亲测可用
2024-05-17 20:35:45
3.13MB
小波去噪
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
《MIMO-OFDM无线通信技术及MATLAB实现》高清PDF及源代码
cublas64_11.dll cublasLt64_11.dll cusolver64_11.dll
毕业设计:基于Python的网络爬虫及数据处理(智联招聘)
matpower5.0b1.zip
Vivado license 永久
故障诊断数据集及实现代码
RX560 bios合集(请务必注意显存品牌和大小以及是否需要6pin!)含刷新工具.zip
商用密码应用与安全性评估——霍炜.pdf
知网情感词典(HOWNET)
模型预测控制MPC(模型预测电流控制,MPCC)的simulink仿真,2016b版本
CPLEX12.8学术版安装包:cplex_studio128.win-x86-64.exe
2019年秋招—华为硬件工程师笔试题目.pdf
狂神说Java系列笔记.rar
pytorch实现RNN实验.rar
copula程序及算法.zip
最新下载
通力KCE维修助手.apk
ga-ep43t-ud3l f9 bios
吉大人工智能2020直博复试回忆版.docx
VeRi-776数据集
简易波形发生器
matlab.m文件编译成exe带 IRIS工具包
Locale.Emulator.2.5.0.1.zip
MATLAB DL工具箱 (deep learning toolbox)
东北大学软件学院软件需求分析与设计19级期末试卷
kobo aura one全套刷机包加教程
其他资源
大华最新_(20190312)_Android和iOS播放和网络SDK
STM8S_StdPeriph_Lib.zip
0.96 OLED 显示屏 STM8 IIC 例程
全世界78707个主要城市信息数据库,包含经纬度坐标值
SPL06-001_datasheet_V2.0
android app 课程表实现源码
Android用Canvas画曲线图并动态更新数据
R15 38.101-3 5G 用户设备(UE)无线发送和接收 第三部分.pdf
$P Point-Cloud Recognizer 点云手势识别 PPT介绍
alphakappa-Detection-PyTorch-Notebook-master.rar
ACS580固件手册.pdf
最新华为无线HCIP考试题库PDF+CVE
datamatrix解码c源代码
TCL 王牌数字芯12进48出电话交换机软件
MFC 浏览器
一键复制黏贴,按住F11和F12可以直接使用复制黏贴
jsp做的图书管理系统
JSP、JavaBean和Servlet完成一个简单的留言板设计
quick_search数据库检索工具
微信3D抽奖软件注册机
js uml2框架
three.min.js多版本集合