四、 实验程序流程图 五、 实验步骤 1、Proteus 仿真 a.在 Proteus 中打开设计文档“多位十六进制加法运算.DSN”; b.单步运行,打开调试窗口进行调试。 参考程序: CODE SEGMENT ASSUME CS:CODE,DS:DATA BEG: MOV AX,DATA MOV DS,AX MOV SI,OFFSET NUM1 MOV AX,0 开始 N1+N2 N1+N2+N3 结束
2025-11-29 12:35:21 1.03MB proteus 8086
1
Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts and offers intuitive yet informative explanations of how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls. Currently, if you type "machine learning" as a search term in Google Scholar, it returns an overwhelmingly large number of publications—1,800,000. Of course, we cannot discuss the nitty-gritty of all the different algorithms and applications that have emerged in the last 60 years. However, in this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that can be used to follow up on the essential breakthroughs in this field. If you have already studied machine learning theory in detail, this book will show you how to put your knowledge into practice. If you have used machine learning techniques before and want to gain more insight into how machine learning actually works, this book is for you. Don't worry if you are completely new to the machine learning field; you have even more reason to be excited. Here is a promise that machine learning will change the way you think about the problems you want to solve and will show you how to tackle them by unlocking the power of data. Before we dive deeper into the machine learning field, let's answer your most important question, "Why Python?" The answer is simple: it is powerful yet very accessible. Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action. We, the authors, can truly say that the study of machine learning has made us better scientists, thinkers, and problem solvers. In this book, we want to share this knowledge with you. Knowledge is gained by learning. The key is our enthusiasm, and the real mastery of skills can only be achieved by practice. The road ahead may be bumpy on occasions and some topics may be more challenging than others, but we hope that you will embrace this opportunity and focus on the reward. Remember that we are on this journey together, and throughout this book, we will add many powerful techniques to your arsenal that will help us solve even the toughest problems the data-driven way.
2025-11-25 01:59:33 10.6MB TensorFlow Python 机器学习
1
压实、采摘和种植 (CPG) 这是 CPG 的官方 Pytorch 实现——一种用于对象分类的终身学习算法。 有关CPG的详细信息,请参阅论文《 ( , ) 该代码仅供学术研究使用。 如需商业用途,请联系教授( )。 基准测试 施引论文 如果这些代码有助于您的研究,请引用以下论文: @inproceedings{hung2019compacting, title={Compacting, Picking and Growing for Unforgetting Continual Learning}, author={Hung, Ching-Yi and Tu, Cheng-Hao and Wu, Cheng-En and Chen, Chien-Hung and Chan, Yi-Ming and Chen, Chu-Song}, booktitle={Advance
1
UofG_PGT_IDSS 该存储库包含用于实践从UofG的MSc计算科学的PGT学习过程中从数据科学与系统概论课程获得的知识的代码。 请注意,该代码是根据。 注意力 可以在Visual Studio代码(如果支持)中打开和编辑IPYNB文件。 到2021年3月31日,使用代码编辑器(版本:1.55.0)看起来一切都很好。 作为一种选择,您还可以在Anaconda中使用Jupyter Notebook。 下表列出了开发中使用的主要软件包。 姓名 版本 Python 3.8.8 1.0 1.0 matplotlib 3.3.4 麻木 1.20.1 大熊猫 1.2.3 科学的 1.6.1
2025-11-10 22:36:39 122.23MB data-science python3 learning-exercise JupyterNotebook
1
DeepBGC:生物合成基因簇的检测和分类 DeepBGC使用深度学习来检测细菌和真菌基因组中的BGC。 DeepBGC使用双向长期短期记忆递归神经网络和Pfam蛋白域的word2vec样载体嵌入。 使用随机森林分类器预测产品类别和检测到的BGC的活性。 :pushpin: 消息 :pushpin: DeepBGC 0.1.23:预测BGCs现在可以在antiSMASH使用JSON输出文件被上传用于可视化 根据以下说明,照常安装和运行DeepBGC 上传antismash.json从DeepBGC输出文件夹使用“上传额外的注释” 页 预测的BGC区域及其预测分数将与antiSMASH BGC一起显示 刊物 用于生物合成基因簇预测的深度学习基因组挖掘策略Geoffrey D Hannigan,David Prihoda等人,《核酸研究》,gkz654, //doi.org/10.1093/nar/gkz654 使用
2025-10-29 18:34:24 557KB python deep-learning bidirectional-lstm
1
在本实践项目中,我们探讨了如何利用OpenAI的Gym库进行Q-learning强化学习算法的应用。Gym是一个广泛使用的Python库,它为各种环境提供了一个标准接口,这些环境可以用于训练和测试强化学习算法。这里,我们专注于“FrozenLake”环境,这是一个经典的学习问题,旨在模拟一个简单的迷宫游戏,其目标是通过一个冰湖到达目的地。 **Q-learning强化学习基础** Q-learning是一种无模型的、离策略的强化学习算法,它的核心思想是通过构建Q表来学习一个智能体在给定状态下的最优行动。Q表记录了在每种状态下执行每种动作所能获得的期望奖励。随着时间的推移,通过不断更新Q表,智能体逐渐学会哪种行为序列会带来最大的长期奖励。 **Gym环境的搭建** 在Gym库中,环境通常通过`gym.make()`函数创建。例如,要创建“FrozenLake”环境,我们可以编写`env = gym.make('FrozenLake-v0')`。这个环境提供了`reset()`和`step()`两个主要方法。`reset()`用于初始化环境并返回初始状态,而`step()`则接受一个动作作为输入,执行该动作并返回新的状态、奖励、是否游戏结束以及额外的信息。 **FrozenLake环境的源程序结构** “FrozenLake”环境的源代码展示了如何实现一个简单的MDP(Markov Decision Process)环境。它包括状态空间、动作空间、状态转移概率和奖励函数等组件。在源码中,你可以看到如何定义湖的布局、每个位置的状态(如安全、冰裂或目标)以及智能体可能执行的动作(如上、下、左、右)。 **Q-learning在FrozenLake中的应用** 在解决FrozenLake问题时,Q-learning的步骤如下: 1. 初始化Q表,将所有状态-动作对的值设为0。 2. 对环境进行多次迭代,每次迭代执行以下步骤: a. 选择一个动作,根据当前策略(如ε-greedy策略)。 b. 在环境中执行这个动作,观察新状态和获得的奖励。 c. 更新Q表,使用Q-learning的更新公式:`Q(s, a) <- Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))`,其中s是旧状态,a是执行的动作,s'是新状态,α是学习率,γ是折扣因子,r是奖励。 d. 如果游戏结束,停止迭代;否则,将新状态设置为当前状态并继续。 **实现与优化** 在实践中,可能会采用不同的技术来提高Q-learning的性能,如经验回放缓冲区、目标网络稳定性和策略改进。同时,为了防止过度拟合,可以引入探索策略如ε-greedy,随着学习的进行逐渐减少ε值。 通过这样的实践,你可以深入理解Q-learning的工作原理,以及如何将强化学习应用于解决实际问题。Gym库提供了丰富的环境,可以用来扩展你的学习,如Atari游戏、机器人控制等,进一步提升你的强化学习技能。
2025-10-13 10:26:32 9KB 强化学习
1
项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2025-10-08 22:32:41 5.27MB
1
《大象:Thinking in UML》(第2版)与《Learning UML 2.0》是两本关于统一建模语言(Unified Modeling Language,简称UML)的重要学习资源,主要面向软件开发人员、系统分析师以及对软件设计感兴趣的读者。UML是一种标准化的图形表示法,用于描述软件系统的设计和实现,它提供了多种图表类型,如用例图、类图、序列图、状态图等,帮助开发者清晰地表达和理解复杂系统。 1. **UML概述**:UML由Grady Booch、Ivar Jacobson和James Rumbaugh共同创建,旨在提供一种通用的建模语言,以便于软件开发团队之间的沟通和协作。UML 2.0是该标准的一个重要版本,引入了更多的图表类型和改进,提高了建模的灵活性和精确性。 2. **用例图(Use Case Diagrams)**:用例图用于描绘系统与用户之间的交互,展示系统的主要功能,通过参与者(Actors)和用例(Use Cases)之间的关系来表达系统的需求。 3. **类图(Class Diagrams)**:类图是UML中最常用的图表之一,它描述了系统中的类、接口、对象及其相互关系,如继承、关联、聚合和组合等,帮助分析和设计软件结构。 4. **序列图(Sequence Diagrams)**:序列图展示了对象间的消息传递顺序,用于表示系统行为的时序和协作,尤其适用于描述系统动态行为和对象间的交互。 5. **状态图(State Diagrams)**:状态图用于表示一个对象在其生命周期内可能经历的各种状态以及引起状态转移的事件。 6. **活动图(Activity Diagrams)**:活动图类似于流程图,用于表示系统中的业务流程或算法步骤,强调控制流和数据流。 7. **组件图(Component Diagrams)**:组件图展示了系统的物理架构,包括软件组件及其依赖关系。 8. **部署图(Deployment Diagrams)**:部署图描述了运行时的硬件和软件环境,以及它们之间的配置。 9. **包图(Package Diagrams)**:包图用于组织和管理项目中的类和其他元素,显示模块化和分层结构。 10. **接口图(Interface Diagrams)**:接口图定义了系统中各组件间的接口,帮助明确系统边界和交互方式。 这两本书将深入探讨这些UML概念,并通过实例演示如何在实际项目中应用UML进行软件建模。《大象:Thinking in UML》(第2版)可能侧重于理论和实践的结合,而《Learning UML 2.0》则可能更专注于新版本的特性与变化。通过阅读这两本书,读者可以系统地学习UML,提升软件设计和开发能力。
2025-09-29 15:13:22 74.37MB UML Learning UML
1
强化学习算法复现研究:深度探究Reinforcement Learning-Based Fixed-Time轨迹跟踪控制机制及其在机械臂的应用——适应不确定性系统及输入饱和状态的自适应控制框架与简易代码实践指南。,《顶刊复现》(复现程度90%),Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,自适应强化学习机械臂控制,代码框架方便易懂,适用于所有控制研究爱好者。 ,核心关键词:顶刊复现; 强化学习; 固定时间轨迹跟踪控制; 不确定机械臂; 输入饱和; 自适应控制; 代码框架; 控制研究爱好者。,《基于强化学习的机械臂固定时间轨迹跟踪控制:复现程度高达90%》
2025-09-29 03:11:49 555KB
1
### 自学式学习:从无标签数据中进行迁移学习 #### 概述 自学式学习(self-taught learning)是一种新型的机器学习框架,旨在利用无标签数据来提高监督分类任务的表现。与传统的半监督学习或迁移学习不同,自学式学习不假设无标签数据遵循与有标签数据相同的类别标签或生成分布。这意味着可以使用大量从互联网随机下载的无标签图像、音频样本或文本文档来改进特定图像、音频或文本分类任务的表现。由于这类无标签数据获取相对容易,因此自学式学习在许多实际的学习问题中具有广泛的应用前景。 #### 主要贡献 本文提出了一个实现自学式学习的方法,该方法利用稀疏编码来构建使用无标签数据形成的更高级特征。这些特征能够形成简洁的输入表示,并显著提高分类性能。当使用支持向量机(SVM)进行分类时,作者还展示了如何为这种表示学习Fisher核的方法。 #### 自学式学习框架 自学式学习的关键在于如何有效地利用无标签数据。为了实现这一目标,文章提出了一种基于稀疏编码的特征构建方法。具体来说: - **稀疏编码**:通过稀疏编码技术,可以从大量的无标签数据中学习到一组稀疏表示。这些表示通常包含了一些对数据有意义的特征,这些特征可能对于后续的分类任务非常有用。 - **特征构建**:通过对无标签数据集应用稀疏编码,可以得到一系列稀疏特征,这些特征进一步被用来构建更高层次的表示。这些高级表示捕捉了数据中的结构化信息,有助于提升分类器的表现。 - **分类器训练**:将构建好的高级特征作为输入,用于训练分类器(如支持向量机)。对于支持向量机而言,还可以进一步优化其内核函数(如Fisher核),以更好地适应特定的任务需求。 #### 实验验证 文章通过一系列实验验证了自学式学习的有效性。实验结果表明,在有限的有标签数据情况下,通过利用大量易于获取的无标签数据,能够显著提高分类任务的准确率。这为解决现实世界中经常面临的有标签数据稀缺问题提供了一种新的解决方案。 #### 结论与展望 自学式学习作为一种新兴的学习框架,为解决监督学习中常见的有标签数据不足问题提供了一个新的视角。通过利用广泛存在的无标签数据资源,不仅能够在一定程度上缓解数据标注的成本问题,还能够有效提升模型的泛化能力。未来的研究方向包括探索更多有效的特征构建方法以及如何在不同的应用场景中更高效地利用无标签数据等。 #### 总结 自学式学习是吴恩达等人提出的一种机器学习框架,它利用无标签数据来改进监督分类任务的性能。这种方法不依赖于无标签数据和有标签数据之间存在相同的类别标签或生成分布,而是通过稀疏编码等技术构建更高层次的特征表示,从而改善分类效果。自学式学习为处理实际问题中常见的有标签数据稀缺问题提供了一个有力工具,具有重要的理论意义和应用价值。
2025-09-27 19:54:23 474KB 迁移学习 吴恩达 自我学习
1