LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅他们的论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的tensorflow,但我认为它可以在版本1.12以上的tensorflow中正常工作。 其他必需的软件包,您可以通过以下方式安装它们 pip3 install -r requirements.txt
1
Obstacle Detection for Self-Driving Cars Using Only Monocular Cameras and Wheel Odometry
2023-04-02 10:52:51 4.58MB 自动驾驶
1
无人驾驶汽车的动手视觉和行为 这是Packt发布的《无人驾驶的代码库。 使用Python 3和OpenCV 4探索视觉感知,车道检测和对象分类 这本书是关于什么的? 这本书将使您对推动自动驾驶汽车革命的技术有深刻的了解。 首先,您所需要的只是计算机视觉和Python的基础知识。 本书涵盖以下激动人心的功能: 了解如何执行相机校准 熟悉使用OpenCV在自动驾驶汽车中进行车道检测的工作原理 通过在视频游戏模拟器中自动驾驶来探索行为克隆 掌握使用激光雷达的技巧 探索如何配置自动驾驶仪的控件 使用对象检测和语义分割来定位车道,汽车和行人 编写PID控制器以控制在模拟器中运行的自动驾驶汽车 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: img_threshold = np.zeros_like(chan
2023-03-27 16:36:32 825.36MB JupyterNotebook
1
自主驾驶车辆的深度模仿学习 自动驾驶汽车已经引起了学术界(例如牛津,麻省理工学院)和工业界(例如Google,特斯拉)的极大兴趣。 但是,由于普遍的知识,我们发现直接实现全自动驾驶(SAE 5级)非常困难。 为了解决这个问题,深度模仿学习是一种有前途的解决方案,可以从人类的演示中学习知识。 在这个项目中,我们研究了如何使用深度模仿学习来实现车辆动态控制(例如转向角,速度)。 我们使用了Udacity( )提供的数据集和模拟器以及现实世界中的comma.ai数据集。
2023-03-02 16:47:03 14KB Python
1
DeepGTAV:GTAV的插件,可将其转变为基于视觉的自动驾驶汽车研究环境
1
matlab控制代码 automated-driving-control 此代码库为bilibili上《自动驾驶控制算法》系列的所有matlab代码与模型。 欢迎转载,转载注明出处即可。 欢迎关注我的b站账号:忠厚老实的老王。 空间链接:
2022-10-13 21:38:11 40.84MB 系统开源
1
Python中的实用自主项目 车道检测 交通标志识别 I.加载带有标签的完整数据集 二。 将图像大小转换为32x32 三, 建立卷积神经网络 IV。 训练模型 五,使用网站上的图片进行测试 样本图片 图片尺寸为32x32(RGB) 图片尺寸为32x32(HSV) 样品输出 标签 # 标签名 softmax概率 14 停 0.998944 33 向右转 0.000532 29 自行车穿越 0.000311 34 向左转 0.000118 36 直走或右走 0.000095
1
项目:建立交通标志识别程序 该项目 该项目的目标/步骤如下: 加载数据集 探索,总结和可视化数据集 设计,训练和测试模型架构 使用模型对新图像进行预测 分析新图像的softmax概率 用书面报告总结结果 依存关系 该项目要求: tensorflow-gpu == 1.7.0 scipy == 1.0.0 matplotlib == 2.0.0 numpy == 1.14.2 opencv-contrib-python == 3.4.0.12 sklearn == 0.18.2 数据集探索 数据集摘要 。 加载数据集和基本摘要 加载数据集后,我得到以下摘要信息: 训练例数:34799 测试例数:12630 验证示例数:4410 图像形状为:(32 32,3) 类数标签:43 探索性可视化 该图像网格表示从训练集中每个类别中选择的一个随机图像 分配 现在,我们将探索分
1
颜色分类leetcode 自动驾驶汽车的感知算法 Udacity自动驾驶汽车纳米学位项目感知相关项目。 概括 车道线查找 传统的计算机视觉技术,如相机校准、颜色阈值和图像包装,已用于车道线查找。 Bird eye view中的Lane Line从像素单位转换为米单位,计算得到车辆的CTE(Cross Track Error)和车道的Curvature 。 车辆检测 SVM分类器用于对车辆和非车辆进行分类, Sliding window方法用于从图像中检测车辆。 通过由当前图像帧和前一图像帧的信息组成的Heat-map来防止多重检测和误报问题。 交通标志分类 CNN(卷积神经网络)用于交通标志分类,可识别和区分43种不同类型的交通标志。 再培训后,识别交通标志的测试准确率高达 93.5%。
2022-05-07 17:57:42 185.04MB 系统开源
1
可用于UnityVR开发,3D游戏开发,高清天空盒子Skybox素材,游戏环境背景素材,无水印。 让你身临其境的天空盒子,各类题材丰富,都是辛苦搜罗所得的高清exr格式,可以直接用于Unity开发,特别是VR游戏的开发。 内景、外景、城市、乡间、日出,夜晚,欧式宫殿,中式园林,应有尽有,可以在我的下载频道选择需要的下载。 注意,由于是高清,所以体积较大(大的可以达到500M),请下载前预留合适的空间。 使用方法: 1-导入Unity后将图片的Shape转换成cube形式, 2-创建空Material,并转换成Cube/skybox形式, 3-将图片拖入新建的SkyboxMaterial, 4-用刚创建的Material代替项目中原本的系统默认Skybox
2022-05-06 18:14:41 291.96MB vr unity skybox 天空盒子