深度学习 Scala的深度学习(dl4j的scala包装器)
2023-04-14 13:46:23 14KB Scala
1
详细说明DL4J作为Java深度学习接口的特点以及使用方法,包括构建不同神经网络类型比如卷积,循环,前馈,以及从训练集构建到模型评估的全流程手把手教学
2022-11-16 21:34:30 4.82MB 深度学习 Java DL4J 神经网络
1
这是Deeplearning4j所有依赖的jar包,不需要Maven就可以使用。方便代码的迁移,也适合学习阶段使用。
2022-01-13 19:55:10 157.16MB 深度学习
1
采用卷积神经网络(cnn)进行文本分类,依赖dl4j 简介 基于dl4j-example中的示例,训练数据较少,从某东上拉取了几百条产品及类型划分,可以用于文本分类,搜索意图识别 train.txt示例,第一列表示产品分类,后边则是分词后的产品名称 eg.衣服 海澜之家 旗下 品牌 海澜 优选 生活馆 多色 条纹 短袖 t 恤 男 浅灰 条纹 07170 / 95 运行 1.运行Word2VecUtil.main生成word2vec.bin模型文件,data目录已存在,训练数据采用train.txt中的产品名称 2.运行CnnSentenceClassificationExample.main训练模型并输出测试结果 测试结果 Type:衣服, ProductName : 【 一件 48 两件 78 三件 98 】 t 恤 男 2018 男装 韩 版 夏季 短袖 t 恤 男 短袖 体恤 衣服
2021-11-30 11:25:25 3.61MB Java
1
dl4j基础教程 配套视频:https://space.bilibili.com/327018681/#/
2021-10-08 13:30:43 27.08MB dl4j
1
java俄罗斯方块源码 环境要求: 1.JDK1.8或者更高版本(已经设置好JAVA_HOME和PATH环境变量) 2.maven 3.3.9或者更高版本(已经设置好PATH环境变量) 编译: 在dl4j-tetris目录下,Linux下运行./compile.sh编译源码(Windows下运行compile.bat) 运行: 1.浏览器打开 ,进入俄罗斯放开游戏界面 2.进入dl4j-tetris目录 3.Linux下运行./run-tetris-area-setter.sh设置俄罗斯方块的游戏区域(Windows下运行run-tetris-area-setter.bat),设置方法参考视频set-tetris-area.mp4(设置完成后不要随意移动浏览器窗体!) 4.打开config.prop配置一些额外的属性(默认不需要配置,可以跳过此步) 5.Linux下运行./run-player.sh(Windows下运行run-player.bat),等待程序初始化完成,然后启动俄罗斯方块的游戏进程(参考视频run-player.mp4)
2021-10-07 10:53:12 3.15MB 系统开源
1
deep learning for java jar包合集,直接导入java项目即可。免maven,方便快捷
2021-08-03 13:38:20 48B dl4j/deep learning for java/免maven
1
dl4j的1.0.0-beta7版本,用minist训练出来的LeNet-5模型
2021-06-29 09:09:26 3.08MB dl4j LeNet-5模型
1
基于java 的深度学习框架DL4J的介绍和实例分析。
2021-04-01 16:10:25 1.41MB 深度学习 java
1
Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach" English | 2017 | ISBN: 1491914254 | Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop
2019-12-21 21:26:47 19.46MB 深度学习 DL4J JAVA
1