心血管疾病使用决策树和随机森林分类器 决策树算法可用于预测心血管疾病并使用随机森林分类器和探索性数据分析来提高准确性
2023-02-08 15:13:46 778KB
1
Kaggle-SMS-Spam-Collection-Dataset-:使用NLTK和Scikit-learn分类为垃圾邮件或火腿邮件
1
(⼀) 在 jupyter notebook 中,实现 KNN 算法和 Decision Trees 算法,要求有完整的注释 (⼆) ⼿手写数字识别 样本中包含1797个⼿手写数字灰度图像,每个图像⼤大⼩小为8*8,可使⽤用 numpy.load('filename.npy') 进 ⾏行行载⼊入 使⽤用留留出法拆分训练集与测试集,留留出10%作为测试集。训练KNN模型,搜索最佳的超参数k和n的取值,提 升识别准确度
2021-12-31 11:03:16 75KB Python KNN DecisionTrees
1
加州住房价格模型 客观的 我使用“加利福尼亚房屋价格数据集”的“随机森林回归”建立了一个模型,以预测加利福尼亚房屋的价格。 图书馆与依存关系 我在这里列出了该项目所需的所有必要的库和依赖项: import sys , os , tarfile , urllib . request import numpy as np import pandas as pd from sklearn . model_selection import train_test_split , cross_val_score , GridSearchCV from sklearn . model_selection import StratifiedShuffleSplit from pandas . plotting import scatter_matrix from sklearn . impute im
1
The classical article in decision trees
2021-12-28 20:24:50 1.77MB decision trees
1
倾斜决策树的合奏 作者:Torsha Majumder 电子邮件: 背景 该存储库包含几种与Scikit-Learn的Bagging分类器兼容的决策树算法。 有关完整的实验设置和结果,请检查。 如果您认为此代码有用,请引用我的工作。 引文 Majumder,T.(2020年)。 倾斜决策树的合奏[德克萨斯大学达拉斯分校的硕士学位论文]。 UTD论文和学位论文。 实验 本实验考虑的决策树: * Standard Decision Tree with Bagging * Oblique Classifier 1 with Bagging * Weighted Oblique Decision Tree with Bagging * Randomized CART with Bagging * HouseHolder CART with Bagging * Continuous Optimi
2021-11-07 15:44:32 2.61MB Python
1
GBDT_Simple_Tutorial(梯度提升树简易教程) 简介 利用python实现GBDT算法的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,便于读者庖丁解牛地理解GBDT。 项目进度: 回归 二分类 多分类 可视化 算法原理以及公式推导请前往blog: 依赖环境 操作系统:Windows/Linux 编程语言:Python3 Python库:pandas、PIL、pydotplus, 其中pydotplus库会自动调用Graphviz,所以需要去下载graphviz的-2.38.msi ,先安装,再将安装目录下的bin添加到系统环境变量,此时如果再报错可以重启计算机。详细过程不再描述,网上很多解答。 文件结构 | - GBDT 主模块文件夹 | --- gbdt.py 梯度提升算法主框架 | --- decision_tree.py 单颗树生成,包括节点划分
1
决策树癌症预测 使用现有数据通过决策树进行学习来预测乳腺癌的示例(scikit-learn / python) 加工 收集的数据样本已分为测试样本和训练样本。 使用scikit的决策树生成器和转换集,可用于基于ID3生成树。 然后可以将测试数据用于交叉验证生成的树的准确性。 这个小程序还生成pdf,以可视化生成的树。 注意 该程序仅用于演示/实验目的。 以下是依赖项 python numpy scipy scikit-学习pydotplus graphviz 使用说明 安装python版本2.7 要安装上述软件包,请遵循以下命令 点安装numpy 点安装scipy 点安装scikit学
1
原版pdf效果极差,网上也找了些由epub格式转换过来的,排版不调整就直接发布,一点也不负责。自己动手丰衣足食吧
2021-04-06 23:03:25 7.52MB Decision Trees
1
TheSparksFoundation_Task-4_Decision-Trees 决策树是用于分析数据的图形表示。 决策树以这种方式为我们提供数据,我们可以轻松地读取,理解和分析数据。 决策树算法属于监督学习算法家族。 ...使用决策树的目的是创建一个训练模型,该模型可以通过学习从先前数据(训练数据)推断出的简单决策规则来预测目标变量的类或值
2021-03-02 13:05:40 3KB Python
1