利用CST软件进行可重构超表面的设计方法和技术细节。主要内容涵盖三个关键方面:一是通过嵌套方环+PIN二极管加载结构实现宽带和窄带吸收模式之间的快速切换;二是采用自适应粒子群优化算法自动化寻找最佳结构参数;三是基于相位分布计算实现多波束控制并解决单元间耦合带来的相位误差。文中提供了具体的建模步骤、仿真设置以及优化算法的代码片段,展示了实际测试的效果。 适合人群:从事电磁学研究、天线设计、无线通信系统开发的研究人员和工程师。 使用场景及目标:适用于需要灵活调整电磁特性应用场景,如隐身材料、智能天线、相控阵雷达等领域。目标是掌握CST软件在复杂电磁结构设计中的应用技巧,提高设计效率和性能。 其他说明:作者强调了实际操作过程中需要注意的问题,如避免使用理想开关模型、合理选择单元间距等,并分享了一些实践经验,如修正系数的选择依据。此外,还提到所有相关代码已托管于GitHub平台供读者下载学习。
2025-12-03 11:06:47 1.61MB
1
内容概要:本文详细介绍了使用CST Microwave Studio进行三维超材料能带计算的方法和技巧。首先强调了正确的初始设置,如选择Eigenmode求解器和设置周期性边界条件。接着讲解了建模过程中的一些实用技巧,如使用VBA脚本批量生成复杂晶格结构。随后讨论了能带扫描的核心步骤,即参数化k矢量并通过三重循环遍历布里渊区路径。还提到了后处理阶段的重要注意事项,如模式追踪和数据可视化。最后分享了一些提高效率和准确性的小技巧,如优化网格划分和参数校验。 适合人群:从事超材料研究的科研人员和技术爱好者,尤其是有一定CST使用基础的人。 使用场景及目标:帮助研究人员掌握三维超材料能带计算的具体流程,提高计算效率和结果准确性,适用于学术研究和工程应用。 其他说明:文中不仅提供了详细的理论指导,还包括大量实用的代码示例,便于读者理解和实践。
2025-11-25 22:08:05 147KB
1
内容概要:本文介绍了如何利用CST软件进行三维超材料的能带计算。首先概述了三维超材料的独特性质及其在电子设备和光子晶体领域的广泛应用前景。接着简述了CST软件的功能特点,重点在于其电磁场模拟能力。随后详细讲解了能带计算的具体步骤,包括模型建立、材料参数设置、网格划分与求解设置以及最终的数据分析。最后给出了一段Python代码示例,展示了如何处理CST输出的能带数据并绘制能带图。 适合人群:从事材料科学研究的专业人士,尤其是对超材料感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于希望深入了解三维超材料电子结构的研究人员,旨在提高他们对该材料的理解和应用能力,促进相关领域的技术创新和发展。 其他说明:文中提供的Python代码仅为示例,在实际操作时可根据具体情况进行调整优化。同时,随着科学技术的进步,三维超材料的研究也将不断取得新的进展。
2025-11-25 22:07:27 910KB
1
第三节滤波应用和反变换 该功能可以利用滤波和反 FFT 变换处理,有下表的几种选择: 表 5-3-1 滤波和反变换的功能选择 处理选择 选 择 结 果 具 有 快 速 处 理 的 滤波网格 [OK] 存储带有原始网格大小和趋势信息的 滤波和空间域(.GRD)文件(即快速 处理被增加到输出文件) 不 带 有 快 速 处 理 的滤波网格 仅 仅 滤 波 — 不 进 行反变换 [Flt-Inv Only] 未存储带有原始网格大小和趋势信息 的滤波和空间域(.GRD)文件(即快 速处理未被增加到输出文件) [Filter- Only] 产生滤波转换文件(.TRN)但不滤波 网格。在滤波控制文件中的任何空的 滤波行(即,地磁信息的头五行)将 跳出滤波处理。 可以选择具有快速处理的滤波网格,该选择应用网格逻辑储存原始网格大 小,和在初始的网格准备阶段代替去除的趋势。 该功能的操作步骤如下: ①在 MAGMAP 菜单,单击 Step-by-step filtering\Apply Filter,显示 FFT2FLT 对话框(图 5-3-1)。 ②用[Browse]按钮,选择输入变换网格文件名 Name of Input Transform (*_trn.grd)File,和参考网格文件名 Name of Reference (Original)Grid File。 选择输出网格文件名 Name of OutputGrid File (mag_out)和滤波控制文件 Name of Filter Control file。 69
2025-11-17 14:33:50 8.46MB Oasis_montaj
1
使用CST(Computer Simulation Technology)软件对超表面材料进行仿真的方法和技术,重点探讨了可调材料在全空间中的涡旋与聚焦现象。文章首先概述了CST仿真超表面的基本概念,接着阐述了可调材料与全空间涡旋与聚焦仿真的具体步骤,包括CST单元仿真和相位计算。随后,文章讲解了如何通过CST与Matlab的联合布阵与后处理代码进一步优化仿真结果。最后,文章讨论了该技术的应用场景,如透镜设计、涡旋光束产生和全息技术等。 适合人群:从事电磁仿真、光学工程及相关领域的研究人员和工程师。 使用场景及目标:适用于希望深入了解超表面材料特性和电磁波传播行为的研究人员,旨在提高电磁波控制和优化能力。 其他说明:文中不仅提供了详细的仿真流程和技术细节,还展示了实际应用案例,帮助读者更好地理解和掌握相关技术。
2025-11-06 15:09:43 905KB
1
超表面与超材料:CST仿真设计、材料选择与代码实现全解析,基于超表面与超材料的CST仿真技术研究与应用:涵盖二氧化钒、石墨烯等材料,聚焦代码与涡旋代码的全面解析,CST仿真 超表面 超表面,超材料 超表面CST设计仿真 超透镜(偏移聚焦,多点聚焦),涡旋波束,异常折射,透射反射编码分束,偏折,涡旋(偏折,分束,叠加),吸波器,极化转,电磁诱导透明,非对称传输,RCS等 材料:二氧化钒,石墨烯,狄拉克半金属钛酸锶,GST等 全套资料,录屏,案例等 聚焦代码,涡旋代码,聚焦透镜代码, CST-Matlab联合仿真代码,纯度计算代码 ,核心关键词: 1. 超表面; 超材料 2. CST仿真 3. 透射反射编码分束 4. 涡旋波束 5. 二氧化钒; 石墨烯; 狄拉克半金属钛酸锶 6. 聚焦代码; 联合仿真代码 7. 材料属性(纯度计算) 这些关键词一行中以分号隔开: 超表面;超材料;CST仿真;透射反射编码分束;涡旋波束;二氧化钒;石墨烯;狄拉克半金属钛酸锶;聚焦代码;联合仿真代码;材料属性(纯度计算) 希望符合您的要求。,《CST仿真与超表面技术:聚焦透镜与涡旋波束的全套资料与代码
2025-11-05 11:56:45 4.08MB
1
2.5 阵列天线的RCS 由单元天线的RCS得到阵列天线的RCS
2025-11-02 14:15:48 1.95MB CST丛书 相控阵天线 算例05
1
利用CST微波工作室进行超表面仿真,实现从线极化到圆极化的极化转换器的设计与优化过程。首先,通过建立简单的十字形金属贴片模型并设定材料参数和边界条件,确保仿真环境符合实际需求。接着,通过VBA脚本优化X和Y方向的相位差,使其达到90度,从而实现线极化向圆极化的转变。随后,使用Python对S参数进行后处理,绘制轴比曲线图,验证极化转换效果。最后,通过Matlab进一步确认圆极化的旋转方向,确保仿真结果与文献一致。 适合人群:从事电磁仿真、天线设计以及超表面研究的专业技术人员。 使用场景及目标:适用于需要深入了解极化转换机制及其仿真的研究人员和技术人员,帮助他们掌握CST仿真工具的具体应用方法,提高仿真精度和效率。 其他说明:文中还特别提到网格划分对仿真收敛速度的影响,建议采用六边形网格以加快收敛。
2025-10-30 11:16:27 319KB
1
内容概要:本文详细介绍了利用CST微波工作室进行超表面仿真,将线极化波转化为圆极化波的技术实现过程。首先,构建了一个简单的十字形金属贴片作为超表面单元模型,设置了金属层和基板的具体参数。接着,通过调整X和Y方向的相位差达到90度来实现极化转换,并使用VBA脚本进行参数优化。最终,在12.5GHz频率处实现了低于3dB的轴比,验证了圆极化的成功转换。此外,还讨论了网格划分对仿真的影响,指出六边形网格相比矩形网格能更快收敛。 适合人群:从事电磁仿真、天线设计以及超表面研究的专业技术人员。 使用场景及目标:适用于需要深入了解线极化转圆极化技术原理及其实际应用的研究人员和技术开发者。目标是掌握CST仿真工具的操作技巧,理解极化转换的关键技术和优化方法。 其他说明:文中提供了详细的建模步骤、参数设置和代码片段,有助于读者快速上手并复现实验结果。同时提醒注意网格划分的选择,以提高仿真效率。
2025-10-30 11:14:57 286KB
1
在电子设计领域,CST(Computer Simulation Technology)是一款强大的电磁场仿真软件,常用于射频、微波和光学元件的设计。而PCB(Printed Circuit Board)是电子设备中的电路载体,通过PCB设计工具,如Altium Designer(AD20),我们可以将CST中的周期结构模型转换为实际的PCB加工文件。以下详细阐述这一过程: 我们需要在CST中创建并优化周期结构模型。这通常涉及到复杂的电磁仿真,确保设计满足性能要求。一旦模型准备就绪,我们需要导出模型的一部分,即一个周期单元,而不是整个周期结构。这是为了避免在CAD软件(如AutoCAD)中渲染时出现卡顿。选择模型的一个角落,然后通过输入Enter确认导出。 接下来,打开CAD软件,导入刚才导出的DXF文件。DXF是一种通用的矢量图形格式,适用于不同CAD软件之间的数据交换。在CAD中,对图层进行管理,选择对应的图层属性,并使用K命令填充图层,填充方式设为Solid。这里的关键是保持图层设置与PCB的颜色对应,以便于后续的识别和操作。完成填充后,将文件保存为DWG格式,但要注意,输出的DWG文件版本应比AD20的版本低,以确保兼容性。 现在,我们转向AD20进行PCB设计。新建一个PCB项目,因为这里只需要PCB布局,不需要原理图。接着导入CAD中的DWG文件。导入过程中可能会出现模型不在绘图区的提示,此时需要手动调整模型颜色,例如将Top layer层设为红色。在AD20中,双击紫色区域,修改右侧属性对话框,将其设置为Top layer层。 为了使绘图区域与周期单元匹配,我们需要画一个与周期单元相同大小的矩形,然后通过“设计”菜单下的“板子形状”功能,选择“按照选择对象定义”,将矩形作为PCB板的边界,最后删除这个矩形。 阵列复制是PCB设计中常用的操作,可以快速创建周期性结构。在AD20中,先复制周期单元(确保点击中心位置),然后通过“编辑”菜单选择“特殊粘贴”中的“粘贴阵列”。设定粘贴起始位置,并去除重复的单元,因为首次粘贴的单元可能是重复的。 将完成的PCB设计输出为可供制造商加工的文件。在AD20中,选择“文件”——“制造输出”——“Gerber Files”。设置单位为mm,分辨率一般为4:2,这样生成的Gerber文件包含了PCB的所有制造信息,可供PCB厂商进行生产。 从CST到PCB的过程涉及多个步骤,包括模型的导出、CAD中的图层管理和填充、再到AD20中的PCB布局和阵列复制,以及最终的Gerber文件生成。这一流程要求设计师熟练掌握多种工具,同时对电磁仿真和PCB设计有深入理解,以确保设计的准确性和可制造性。
2025-10-25 23:38:31 1.91MB
1