伯特提取摘要器 此存储库是演讲摘要存储库的一般化。 该工具利用HuggingFace Pytorch变压器库来进行提取性汇总。 通过首先嵌入句子,然后运行聚类算法,找到最接近聚类质心的句子,可以实现这一目的。 该库还使用共指技术,利用库解析需要更多上下文的摘要中的单词。 可以在CoreferenceHandler类中调整Neurocoref库的贪婪性。 论文: : 尝试在线演示: 安装 pip install bert-extractive-summarizer 使用Neurocoref的共指功能需要一个spaCy模型,该模型必须单独下载。 默认模型是小型英语spaCy模型(en_core_web_sm,11Mb),并随此软件包自动安装。 要使用其他型号,您必须手动安装。 示例:安装中型(91 Mb)英文模型(有关更多模型,请参见)。 pip install spacy pi
1
SpanBERT用于中文共指解析(Pytorch) 参考论文: 参考开源代码(针对英语,使用tensorflow): : 预训练模型下载地址: 中文预训练RoBERTa模型( 中文预训练BERT-wwm模型( 中文预训练Bert模型( 1.代码架构: │conll.py│coreference.py│demo.py│metrics.py│utils.py│experiments.conf│requirements.txt│├─bert││modelling.py││optimization.py││tokenization.py│├─ conll-2012│└─scorer│├─reference-coreference-scorers│└─v8.01├─data│├─dev│├─test│└─train│└─pretrain_model│bert_config.json│pyt
2021-07-08 23:39:31 8.73MB Python
1
BERT和SpanBERT用于共指解析 该存储库包含该论文的代码和模型,。 此外,我们还包括论文分辨率模型,这是OntoNotes(79.6 F1)的最新技术。 请参阅以了解其他任务。 模型架构本身是模型的扩展。 建立 安装python3要求: pip install -r requirements.txt export data_dir= ./setup_all.sh :这将构建自定义内核 预训练共指模型 请下载以下文件,以对数据使用预训练的共参照模型。 如果您想训练自己的共参照模型,则可以跳过此步骤。 模型 下载 F1(
2021-04-06 17:55:56 4.12MB nlp bert natural coreference-resolution
1