### SUNET: Speaker-Utterance Interaction Graph Neural Network for Emotion Recognition in Conversations #### 背景与意义 在当今社会,随着人工智能技术的飞速发展,对话系统中的情感识别(Emotion Recognition in Conversations, ERC)已经成为了一个重要的研究领域。通过捕捉对话中说话人的情绪变化,ERC在客户服务、心理治疗、娱乐等多个领域都有着广泛的应用前景。近年来,图神经网络(Graph Neural Networks, GNNs)因其能够捕捉复杂非欧几里得空间特征的能力,在ERC任务中得到了广泛应用。然而,如何有效地建模对话过程,以提高在复杂交互模式下的ERC效果仍然是一个挑战。 #### 主要贡献 为了解决上述问题,本文提出了一种名为SUNET的新方法,该方法构建了一个基于说话人和话语(utterance)交互的异构网络,有效考虑了上下文的同时,还考虑了说话人的全局特性。具体而言,SUNET的主要贡献包括: 1. **构建Speaker-Utterance Interactive Heterogeneous Network**:SUNET首先构建了一个说话人-话语交互的异构网络,该网络不仅包含了话语节点,还包括了说话人节点,这样可以在考虑话语之间关系的同时,也考虑到说话人之间的联系。 2. **基于GNN的情感动态更新机制**:在异构网络的基础上,SUNET利用图神经网络对话语和说话人的表示进行动态更新。这一机制根据说话顺序来更新话语和说话人的表示,从而更好地捕捉到对话中的情感变化。 3. **定制化的节点更新策略**:为了充分利用异构网络的特点,SUNET分别为话语节点和说话人节点设计了不同的更新方法,确保每个节点都能得到最合适的表示更新。 #### 方法论 1. **网络结构**: - **话语节点**:每个话语被视为一个节点,其包含的内容可以是文本、语音或两者的组合。这些节点通过边与其他话语节点相连,表示对话中的话语顺序。 - **说话人节点**:每个说话人都有一个对应的节点,该节点不仅包含了说话人的基本信息,还包含了该说话人在整个对话中的所有话语的汇总信息。 2. **节点特征更新**: - **话语节点**:采用特定的GNN层(如GCN、GAT等),根据当前话语及其前后话语的内容,更新该话语节点的特征向量。 - **说话人节点**:说话人节点的更新则依赖于与其相关的所有话语节点的信息。通过聚合这些信息,可以更新说话人节点的特征向量,以反映说话人在对话中的情绪状态。 3. **训练与优化**: - 使用多轮对话数据进行训练,并采用交叉验证等技术优化模型参数。 - 在训练过程中,可以引入额外的任务(如说话人身份识别)作为辅助任务,以进一步提升模型性能。 #### 实验结果 为了验证SUNET的有效性,作者在四个ERC基准数据集上进行了广泛的实验。实验结果显示,SUNET相比于现有方法取得了平均0.7%的性能提升。这表明,通过结合说话人和话语的交互信息,并利用图神经网络对其进行建模,可以有效地提升情感识别的效果。 SUNET为对话情感识别提供了一种新的视角,通过构建说话人-话语交互的异构网络并利用图神经网络进行建模,实现了对对话中情感变化的有效捕捉。这种方法不仅在理论上有一定的创新性,在实际应用中也具有很高的潜力。
2024-09-05 17:14:59 1.18MB 机器学习 人工智能 深度学习
1
RECCON:识别对话中的情感原因 该存储库包含论文“的数据集和模型的pytorch实现。 任务概述 给定一个用情感E标记的话语U,任务是从对话历史记录H中提取因果跨度S(包括话语U),该因果跨度S足以表示情感E的原因。 数据集 原始带注释的数据集可以在data/original_annotation文件夹中的json文件中找到。 可以在data/subtask1/和data/subtask2/文件夹中找到带有因果提取和因果情感任务的负面示例的数据集。 资料格式 DailyDialog和IEMOCAP的注释和对话可从 。json获得。 JSON文件中的每个实例都分配了一个标识符(例如“ tr_10180”),该标识符是一个列表,其中包含针对每种话语的以下各项的字典: 钥匙 价值 turn 话语指数从1.开始 speaker 目标话语的说话者。 utterance 话语文字。
2023-03-03 16:48:00 47.61MB conversations emotion inference dataset
1
会话中很棒的情感识别 有关与会话中的情感识别(ERC),上下文情感/情感/讽刺分析或语用学的共同分类(如会话中的对话行为)相关的论文的综合阅读清单。 如果列表中缺少任何新的或现有的纸张,请随时发送PR。 什么是ERC? ERC是一项旨在预测对话中每种话语的情感的任务。 以下是一段对话的摘录,其中每种话语都标有相应的情感和情感标签: 概观 ,IEEE情感计算2020交易 ,IEEE Access 2019 资料资源 ,COLING 2020 ,ACL 2020 ,IEEE Access 2020 ,Arxiv 2020 ,LREC 2020 ,ACL 2019 ,ACL 2019 人类行为计算机2019 ,LREC 2018 DailyDialog:手动标记的多回合对话数据集,AFNLP 2017 semaine数据库:人与有限代理之间带有情感色彩的对话的带注释的多
1
算术公式比较运算操作会话--JAVA 该项目是Arithemic /公式/比较计算(操作)和会话的一部分,功能有限,其中使用JAVA执行以下模块。 Compilar:Jetbeans的IntellJi IDEA
1