本系统具有友好的用户操作界面,可以对车牌识别进行结果的展示,通过界面对车牌识别进行分析。 基于 CNN+Yolo 的车牌识别是一种先进的计算机视觉技术,它可以自动识别道路上的车辆并记录下车牌信息。该技术结合了深度学习和目标检测算法,具有高准确性和高效性。 在该技术中,CNN 是一种用于图像分析的深度学习算法,它可以对图像进行自动分类和识别。Yolo 是一种目标检测算法,它可以在图像中自动检测出目标并给出其位置和大小。这两种算法的结合使用可以实现高效的车牌识别。 在实现过程中,首先需要对图像进行预处理,包括去噪、图像增强和尺寸归一化等步骤。接着,使用 CNN 算法对图像进行特征提取,并将其与训练数据进行比对,从而识别出车牌的位置和类型。同时,使用 Yolo 算法对车牌进行精确定位和检测,以确保车牌的完整性和准确性。 该技术的应用场景广泛,例如智能交通系统、停车场管理、安防监控等。在未来,随着计算机视觉技术的不断发展和完善,基于 CNN+Yolo 的车牌识别技术将会得到更广泛的应用,为人们的生活带来更多的便利。同时,该技术还可以应用于车牌的伪造和篡改检测,有助于保障交通安全和社会稳定。
2023-05-03 13:47:23 288.32MB 深度学习 cnn python
1
Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 Python搭建Keras CNN模型识别网站验证码 用Keras来搭建一个稍微复杂的CNN模型来识别以上的验证码
2023-02-13 23:12:38 429KB cnn python keras 人工智能
1
这是 使用卷积核提取图像特征的举例(包含边缘特征提取和浮雕特征提取等)。具体的实现效果还不错,这个博客中已经有所展示。欢迎下载交流。资源中包含全部源代码以及注释,同时使用的所有图片在包含在内。
2022-11-22 14:02:10 8.06MB 卷积核 提取图像特征 CNN Python
BFV&CNN-python文件
2022-11-14 18:34:56 15KB python
1
基于神经网络深度学习 ,实现人脸识别项目,包括原始数据 ,训练数据 训练模型 测试数据等,包含演示同步ppt文件使用的开发工具是pycharm,基于python3实现,该案例可做为本科毕设的入门包含整个讲解过程,从人脸识别到cnn,卷积
2022-10-18 12:05:20 64.04MB 人脸识别 卷积CNN python 深度学习
1
这里面包含整个基于神经网络深度学习 ,实现人脸识别项目,包括原始数据 ,训练数据 训练模型 测试数据等,包含演示同步ppt文件, 使用的开发工具是pycharm,基于python3实现,该案例可做为本科毕设的入门参考,ppt内容包含整个讲解过程,从人脸识别到cnn,卷积,从欧式距离到人脸表情变化的计算详情 以及整个卷积的介绍,可以做为入门以及会议上介绍使用的文档。 参考文件 基于CNN卷积神经网络实现人脸识别-人脸表情识别-同步ppt介绍及基于python3实现识别源代码。
2022-06-27 14:09:30 64.04MB CNN python 卷积神经网络 人脸表情识别
大量车牌车市图片,车牌种类各种,颜色若干,从网上收集,感谢
2022-06-07 21:50:26 2.91MB 深度学习 CNN python
1
本项目是一个完整的深度学习实践,课题是人脸表情识别,使用到的模型是卷积神经网络,难度在简单——中等级别,方便初学者入门。在这里,面部表情识别相当于一个分类问题,共有7个类别。其中label包括7种类型表情。源代码方便大家开箱即用,学习参考! 动手完成这个项目之后,可以学习到: 1. 深度学习中CNN(卷积神经网络)的使用,为之后学习相关神经网络模型做了很好的铺垫。 2. 学会使用深度学习框架之一Pytorch的使用。 3. 多分类问题在实际中的应用,是二分类的扩展。 4. 从数据处理,可视化,到模型搭建的过程,是一种经验和技巧的积累,达到“举一反三”的效果。
2022-03-16 09:16:26 47.22MB pytorch cnn python 人工智能
门控CNN 这是Keras的“门控线性单元”的实现。 要求 Keras 2.1.2 Tensorflow 1.0.0 其他可以在requirements.txt中看到 用法 主类是GatedConvBlock在py/gated_cnn.py 。 由于门控线性单元(GLU)中存在残留连接,因此conv的填充必须same 。 让我们举个例子。 from gated_cnn import GatedConvBlock model = Sequential() model.add(Convolution2D(nb_filters, kernel_size, padding='valid', input_shape=input_shape)) model.add(Activation('relu
2022-01-06 20:38:47 9KB keras gated-linear-unit gated-cnn Python
1
基于卷积神经网络的手写数字识别python代码实现 卷积神经网络(Convolutional Neural Network,CNN)中,卷积层的神经元只与前一层的部分神经元节点相连,即它的神经元间的连接是非全连接的,且同一层中某些神经元之间的连接的权重 w 和偏移 b 是共享的(即相同的),这样大量地减少了需要训练参数的数量。
2021-11-30 16:39:55 21KB cnn,python
1