心脏听诊是先天性心脏病(简称:先心病,CHD)初诊和筛查的主要手段。本项目对先心病心音信号进行分析和分类识别研究,提出了一种基于卷积神经网络的先心病分类算法。本文算法基于临床采集的已确诊先心病心音信号,首先采用心音信号预处理算法提取并组织一维时间域上心音信号的梅尔系数转变成二维特征样本。然后利用卷积神经网络进行分类识别,证实了本文方法有效地提高了心音信号分类的鲁棒性和准确性,有望应用于机器辅助听诊。
心音信号在采集过程中不可避兔地存在一些噪声干扰,干扰由多种原因造成,例如皮肤与传感器的摩獠音、采集环境的背景噪声、患者的呼吸扰动音等噪声干扰,故需对心音信号进行去噪处理,得到噪声较少的心音信号。
MFCC中的梅尔刻度是一种基于人耳对等距的音高变化的感官判断而制定的非线性频率刻度,能较好地反映人耳对声音的特点。