内容概要:本报告系统地分析了2023年人工智能(AI)生成内容(AIGC)在图像生成领域的最新进展和技术趋势。内容涵盖了几种主流的图像生成模型如GANs、Diffusion Models和CLIP的应用及其技术特点,探讨了它们在图像合成、文本到图像转换、风格迁移等具体任务中的表现。同时,对市场现状、未来发展方向以及潜在挑战进行了深入剖析。 适合人群:从事图像处理、机器学习、深度学习等领域研究和开发的专业人士,以及对AI生成内容感兴趣的科技从业者。 使用场景及目标:本文适用于希望了解当前图像生成技术的研究动态和发展趋势的人士,可用于指导相关技术的研究和实际应用项目的设计。 阅读建议:本报告全面覆盖了AIGC在图像生成方面的技术细节和应用场景,建议重点阅读各主要模型的工作原理和案例分析部分,结合自身的业务需求进行深入理解。
2025-06-08 17:04:51 1.65MB Diffusion Models CLIP 图像生成
1
内容概要:本文档是一份面向零基础的学习笔记,详细介绍了多模态模型的基础理论和技术要点,主要包括以下几个方面:初识Transformer和NLP基础,深入讲解Vision Transformer (ViT)的工作原理及其代码实现;详细介绍CLIP模型,涵盖模型架构、代码结构和训练过程;解析BLIP、BLIP2、Flamingo、MiniCPM-V等多个先进的多模态模型,涵盖预训练、图文对比学习、图文匹配、文本生成等方面的技术细节。此外,文档还提供了动手实验指南,帮助读者在实践中加深理解。 适合人群:初学者,尤其是对多模态模型感兴趣的科研人员、开发者。 使用场景及目标:适用于希望快速入门多模态模型领域的学习者。通过对这些模型的理解和实践,读者能够掌握多模态模型的基本原理和实际应用,为进一步研究和开发打下坚实的基础。 其他说明:文档不仅包含理论讲解,还提供了具体的代码示例和实践经验,适合结合代码进行学习。
2025-05-12 11:19:14 4.39MB CLIP Transformer
1
中的知识点主要涉及到的是计算机视觉(Computer Vision)领域的一种高级应用——以文搜图(Image Retrieval)。在这个过程中,我们使用了OpenCV库,一个广泛用于图像处理和计算机视觉任务的开源库,以及ONNXRuntime,这是一个跨平台、高性能的机器学习推理框架。这里的关键技术是将自然语言文本转化为图像特征的表示,以便进行搜索匹配。 中进一步确认了这个项目的目标:当用户输入一段中文描述时,系统能够通过理解文本并匹配图像库中的图像特征,找出最符合描述的图片。这涉及到自然语言处理(NLP)和计算机视觉的结合,特别是文本到图像的语义映射。 **OpenCV**是计算机视觉中的重要工具,它提供了丰富的图像处理函数,包括图像读取、显示、转换、图像特征提取等。在以文搜图的应用中,OpenCV可能被用来预处理图像,如调整大小、去噪、色彩空间转换等,以便后续的特征提取。 **ONNXRuntime**是用于执行预先训练好的机器学习模型的运行时环境,它支持多种深度学习框架,如PyTorch、TensorFlow等。在本项目中,可能有一个基于CLIP(Contrastive Language-Image Pretraining)的模型被转换成ONNX格式,并在ONNXRuntime中运行。CLIP是一个强大的模型,它在大量文本-图像对上进行了预训练,能理解文本与图像之间的语义关系。 **CLIP**是来自OpenAI的一个模型,它通过对比学习的方式学习到了文本和图像之间的对应关系。输入中文描述后,CLIP模型可以将其转化为高维向量,这个向量代表了文本的语义信息。同样,图像也可以通过CLIP转化为类似的向量表示。通过计算两个向量的相似度,可以确定文本描述与图像的相关性。 **C++/C#/C 编程语言**标签表明项目可能使用了这些编程语言中的至少一种来实现上述功能。C++通常用于性能敏感的部分,如图像处理;C#可能用于构建更高级的用户界面或与系统交互的部分;而C语言可能是作为底层库或者与硬件交互的部分。 综合以上,这个项目涉及的技术栈相当广泛,包括计算机视觉、自然语言处理、深度学习模型的部署和优化,以及多语言编程。它展示了如何将先进的AI技术融入实际应用,以解决实际问题。对于开发者来说,理解和实现这样的项目不仅可以提升计算机视觉和NLP的技能,还能增强跨领域技术整合的能力。
2025-05-05 11:08:36 4.16MB 编程语音
1
用于无法访问hugging face并需要运行stable-diffusion-webui时使用
2024-03-20 19:12:00 1.26MB
1
Clip-Two – AngularJS Admin Dashboard Theme (卷一,共三卷)v2.0 angularjs 后台管理模板 及 HTML后台管理模板 Clip-Two is an advanced, responsive dashboard template built with AngularJS, the Superheroic JavaScript MVW Framework. This theme is mobile friendly and ready for you to customize it any way you want to use it. It comes with 5 complete themes: Clip-Two AngularJs Admin, Clip-Two AngularJs Admin RTL Version, Clip-Two jQuery Admin, Clip-Two jQuery Admin RTL and Clip-Two Frontend. AngularJS lets you extend HTML vocabulary for your application. The resulting environment is extraordinarily expressive, readable, and quick to develop.
2023-03-28 16:56:21 44.32MB Clip-Two AngularJS Admin Dashboard
1
文字图像匹配度检测软件(基于CLIP、Transformers等实现) 使用CLIP(对比图文预训练方法)提供的图文匹配度检测接口,使用huggingface基于Transformers的机器模型实现离线翻译,因此输入中英文均可检测。前端图形化界面使用PYQT开发,并使用了qdarkstyle进行优化 左边一栏是候选文字语句,右边一栏是对应每条文字语句的匹配度 支持中英文
2023-01-03 11:26:19 317.82MB python 深度学习 qt pyqt5
1
在使用CLIP做图文匹配时,发现只能用多个文本语句和一张图片匹配,而我想实现多个图片与文本进行匹配,基于CLIP进行实现。从头到尾可一键执行的代码打包一起放在资源里。执行test.py即可抓取你想要数量的图片并从中筛选出最符合你搜索关键词的照片。
2022-12-06 15:19:02 7.61MB CLIP 以文搜图 多模态 人工智能
1
CLIP-GEN 是一个 Language-Free 的文本生成图像的方法,它不依赖图文训练样本,通过预训练 CLIP 模型的强大表征能力,只需要图片数据就可以训练出一个文本生成图像的模型。该方法的基本原理是:CLIP-GEN 首先会训练一个 VQ-GAN,把图片映射到离散空间;然后再训练一个 GPT 模型,把 CLIP embedding 映射到 VQ-GAN 的离散空间;由于在 CLIP 中,文本和图像共享一个特征空间,在 inference 的时候我们就可以通过同样的方法把文本映射到 VQ-GAN 的离散空间,然后 decode 为 RGB 图像。
2022-08-23 11:05:54 6.5MB CLIP-GEN Text-to-ImageGe
1
此代码将栅格数据裁剪为多边形并计算一些统计信息。 目前的操作是: - 按区域聚合:对多边形内的所有像素求和。 值乘以像素和多边形的重叠区域。 - 按面积平均:平均多边形内的所有像素。 平均值是基于像素和多边形重叠区域的加权平均值-聚合:多边形内所有像素的总和,即使是部分像素也是如此。 - 平均:平均该区域内的所有像素,即使是部分像素。 - 多数:返回多边形内所有像素中出现频率最高的值(即使是部分像素)。 它使用matlab的“模式”功能。
2022-08-05 15:44:42 2KB matlab
1
CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization,CVPR2018 code
2022-06-30 20:06:33 13.12MB CLIP-Q