CIFAR-100分类实战项目是一个深度学习领域的实战项目,主要通过ResNet和Wide-ResNet两种流行的卷积神经网络架构,实现对CIFAR-100数据集的分类任务。该项目不仅提供了完整的代码资源,而且还是开源的,这使得广大学习者和研究者能够直接访问并研究代码,从而深入理解模型的调优方法和实验操作流程。 CIFAR-100数据集是由100个小类构成的,每个小类包含600张32x32彩色图像,共有60,000张图像。这个数据集相比CIFAR-10更加具有挑战性,因为包含的类别更多,数据量也更大。在机器学习和计算机视觉领域,它被广泛用作算法性能的测试标准。 ResNet(残差网络)是深度学习中一种重要的神经网络结构,它通过引入“跳跃”连接,解决了网络深度增加时容易出现的梯度消失问题,使得网络可以训练更深。ResNet的设计理念是即使网络很深,也能够保持信息流的畅通无阻,从而使得网络的性能得到显著提升。 Wide-ResNet是ResNet的变种之一,它通过增加网络的宽度来提升性能,即在保持网络深度不变的同时,增加每一层的卷积核数量。这种方法可以有效地提升模型的表达能力,并且通常比增加网络深度的方法更为计算高效。 本项目的开源代码提供了对CIFAR-100数据集的处理和加载流程、数据增强策略、模型搭建、训练与测试的整个流程。使用本项目代码,可以帮助学习者和研究者在实践中学习如何进行模型的设计、调整和优化。这对于理解深度学习模型的内在机制和提高图像分类任务的性能具有很大的帮助。 在项目代码中,会详细展示如何使用Python语言和深度学习框架(如TensorFlow或PyTorch)搭建网络模型,以及如何运用诸如学习率调整、权重初始化、正则化等技术手段进行模型的训练。此外,还会涉及到如何评估模型的性能,比如准确率、损失值等指标的监控和分析。 这个项目对于那些希望提高机器学习技能,尤其是对图像分类有兴趣的研究者和开发者来说,是一个宝贵的资源。通过这个项目,学习者不仅能够学习到构建高性能图像分类模型的技巧,也能够加深对深度学习模型调优过程的理解。
2025-10-23 23:38:48 1.05MB
1
CIFAR-100 是一个图像数据集,包含 60000 张 32x32 分辨率的彩色图像,根据图像内容被分为 100 个小类别,包括:airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck,10个大类下的10个小类,类别之间的交集为空。
1
CIFAR-100 Dataset 是用于机器视觉领域的图像分类数据集,拥有 20 个大类,共计 100 个小类,其中每个小类包含 600 张图像(500 张训练图像和 100 张测试图像)并且每张图像均有一个小标签和一个大标签。 该数据集由多伦多大学计算机科学系的 Alex Krizhevsky、Vinod Nair 和 Geoffrey Hinton 于 2009 年发布,相关论文有《Learning Multiple Layers of Features from Tiny Images》。
2022-07-13 11:05:08 159.45MB 数据集
CIFAR-100 是一个图像数据集,包含 60000 张 32x32 分辨率的彩色图像,根据图像内容被分为 100 个小类别,包括:airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck,10个大类下的10个小类,类别之间的交集为空。
1
CIFAR-100 Dataset is provided by Canadian Institute for Advanced Research.本数据集由加拿大高级研究所提供。 cifar100_test.zip cifar100_valid.zip cifar100_train.zip
2022-06-13 15:00:36 127.71MB 数据集
1
cifar-100-python cifar-100-python cifar-100-python 免费下载
2021-11-13 12:39:14 161.2MB cifar-100-python
1
PyTorch图像分类 以下论文是使用PyTorch实现的。 ResNet( ) ResNet- ( ) 警告( ) DenseNet( , ) 金字塔网( ) ResNeXt( ) 摇一摇( ) LARS( , ) 抠图( ) 随机擦除( ) SENet( ) 混合( ) 双切口( 1802.07426 ) RICAP ( 1811.09030 ) CutMix( 1905.04899 ) 要求 Ubuntu(仅在Ubuntu上进行过测试,因此可能无法在Windows上运行。) Python> = 3.7 PyTorch> = 1.4.0 火炬视觉 NVIDIA Apex pip install -r requirements.txt 用法 python train.py --config configs/cifar/
2021-11-08 11:25:36 3.26MB computer-vision pytorch imagenet cifar10
1
CIFAR-100-图像分类器
2021-10-27 11:58:54 7.67MB JupyterNotebook
1
CIFAR-100上的VGG-16 在CIFAR-100上训练的VGG网(具有batchnorm和dropout)。 您可以通过更改数据加载器类中的一行来轻松修改此代码以在CIFAR-10上进行训练。 在不增加数据的情况下达到约64%的准确性。 该数据集上的记录是75%。 我计划添加数据参数,以使性能达到最新水平。 重要提示-请将saves文件夹下载到项目目录中。 它包含权重 这是架构: 有用的链接
2021-10-26 17:59:11 7KB Python
1
cifar2png 将CIFAR-10或CIFAR-100数据集转换为PNG图像。 安装 $ pip install cifar2png 用法 $ cifar2png [--name-with-batch-index] dataset :指定cifar10或cifar100或cifar100superclass output_dir :保存PNG转换的数据集的路径(将自动创建目录)。 --name-with-batch-index :(可选)基于批处理名称和cifar10 / cifar100数据集的索引来命名图像文件。 运行此工具时,会从自动将cifar-10-python.tar.gz或cifar-100-python.tar.gz到当前目录。 例子 CIFAR-10 $ cifar2png cifar10 path/to/ci
2021-09-29 23:05:44 7KB converter cifar-10 cifar-100 Python
1