CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 该压缩文件中已经将数据集进行随机混乱排布操作,分散在六个子文件夹中,其中五个作为训练集,一个作为测试集; 另外包括其制作而成的tfrecord文件,具体使用方法可参见博客; 用于训练vgg、resnet等网络
2022-06-17 22:30:56 190.83MB 深度学习 神经网络
1
CIFAR_MLP_Pytorch_Lightning 使用Pytorch照明库对多层感知器(MLP)神经网络进行了训练。 CIFAR数据集用于对神经网络进行分类。 进行不同的实验并观察结果。 实验类型和网络验证准确性如下: 版本1:B_SIze:32 H_Layers:1 H神经元:512 Optim:SGD Sigmoid Val_Acc:0.4706 版本2:B_SIze:32 H_Layers:1 H神经元:1512优化:SGD Sigmoid Val_Acc:0.4626 版本3:B_SIze:32 H_Layers:1 H神经元:1512优化:SGD RELU Val_Acc:0.5089 版本4:B_SIze:32 H_Layers:1 H神经元:1512优化:ADAM RELU Val_Acc:0.5114 版本5:B_SIze:32 H_Layers:1 H
2022-05-11 11:39:33 3KB Python
1
使用CIFAR数据集进行残留网络实验。 更新(2018/06/15) 我们使用了一种称为HTD的新学习率调度程序。 您可以在或在我们的玩具演示代码。 原始存储库 该存储库是关于CIFAR-10和CIFAR-100的学习率的一些实验。 原始论文以0.1的学习率开始,在32k( 81 epoch )和48k( 122 epoch )迭代中将其除以10 ,并在64k迭代(总共200 epoch )时终止训练。 我基于相同的架构进行了其他实验。 唯一的区别是学习率时间表。 所有张量板日志和预训练模型都可以在 怎么跑 您可以运行脚本run.sh来启动所有实验。 或仅运行以下命令: python3 ResNet_keras.py --epochs 200 --stack_n 3 --lr_scheduler 1 --dataset cifar100 实验的准确性 如有任何疑问,请随时与我联
2021-11-13 18:59:29 458KB tensorflow keras resnet learning-rate
1
MobileNetV2_pytorch_cifar 这是MobileNetv2在PyTorch中的完整实现,可以在CIFAR10,CIFAR100或您自己的数据集中进行训练。 该网络来自下面的论文 残差和线性瓶颈:用于分类,检测和细分的移动网络 在该网络中,使用了反向残差结构和深度卷积。 请参阅该论文以获取更多详细信息 用法 此项目已编译并在Python 2.7和PyTorch 0.4.0上运行。以下是一些必需的依赖项: torch 0.4.0 torchvision 0.2.1 numpy 1.14.3 tensorboardX 1.2 使用pip首先安装它们 训练与测试 下载CIFAR10或CIFAR100数据集,或准备自己的数据集,如PyTorch中定义的数据加载器 将config.py修改为您自己的配置,例如。 更改image_size或其他 运行python main.py
2021-11-11 20:58:38 13.29MB Python
1
模仿CIFAR数据集格式制作自己的数据集
2021-11-09 11:17:10 4KB cifar
1
cifar数据集,图片大小32*32;总共有十个类,每个类有6000张图
2021-03-19 20:19:21 138.17MB cifar10数据集 数据集 多分类
1
简单的Cifar10数据集 pytorch 框架训练代码 使用简单的ResNet-18 进行训练 代码附有详细注释,一看就懂 修改代码,补充上自己的CiFar10数据集位置,就可以直接运行
1
模仿CIFAR数据集格式制作自己的数据集代码(修改版)
2019-12-21 22:10:44 4KB cifar
1
这份资源内含CIFAR数据集,MNIST手写数据集和KNN(机器学习)算法的MATLAB代码对这两个数据集进行训练,希望对大家有所帮助(由于文件太大,只能截取CIFAR的部分数据
2019-12-21 21:41:49 15.29MB KNN MNIST CIFAR 机器学习
1
识别CIFAR数据集中的10类物体 一、 实验目标 熟悉使用深度学习工具tensorflow,基于该平台对Cifar-10 中的图像数据进行分类识别,在这个过程中掌握卷积神经网络的基本思想。
2019-12-21 20:17:49 577KB 广工 新技术专题
1