Xilinx的SDK自带的lwip_echo例程,直接应用到板子上会出现反复重连的现象,这个版本修复了这个bug。如果依然有疑问,可以直接参考我的专栏https://www.bilibili.com/read/cv5173176
2024-08-13 15:45:24 117.31MB FPGA lwip Nexys Video
1
这是echofire 12 进12出,官方原版声卡驱动,解压安装即可,可设机架宿主混音编曲等,这是echofire 12 进12出,官方原版声卡驱动,解压安装即可,可设机架宿主混音编曲等这是echofire 12 进12出,官方原版声卡驱动,解压安装即可,可设机架宿主混音编曲等
2024-05-20 10:25:08 4.18MB echo12
1
贝内斯底关于回声消除的作品,值得大家下载下来详细研究
2023-08-11 16:27:13 2.06MB 本内斯蒂
1
基于java的 简单echo程序,第一个实现了发送与返回 第二个是发送并返回名人名言 分别用了 TCP 和 UDP协议
2023-06-18 18:04:00 16KB java socket
1
echo_cancel_func_C代码回音消除回音抵消
2023-03-28 18:56:16 4KB
1
特此供各位学习socket朋友参考使用 sdk6 为server sdk7为 client 应该挺好弄清楚的~~~
2023-03-25 15:10:31 4.57MB socket echo 多线程 初学
1
主要介绍了批处理入门手册之批处理常用DOS命令篇,需要的朋友可以参考下
2023-03-09 22:20:28 93KB 常用DOS命令
1
音频隐写术算法:音频隐写术和水印算法库
2023-01-04 20:03:28 18.13MB audio spectrum echo matlab
1
The echo canceller is based on the MDF algorithm described in: J. S. Soo, K. K. Pang Multidelay block frequency adaptive filter, IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-38, No. 2, February 1990. We use the Alternatively Updated MDF (AUMDF) variant. Robustness to double-talk is achieved using a variable learning rate as described in: Valin, J.-M., On Adjusting the Learning Rate in Frequency Domain Echo Cancellation With Double-Talk. IEEE Transactions on Audio, Speech and Language Processing, Vol. 15, No. 3, pp. 1030-1034, 2007. http://people.xiph.org/~jm/papers/valin_taslp2006.pdf There is no explicit double-talk detection, but a continuous variation in the learning rate based on residual echo, double-talk and background noise. About the fixed-point version: All the signals are represented with 16-bit words. The filter weights are represented with 32-bit words, but only the top 16 bits are used in most cases. The lower 16 bits are completely unreliable (due to the fact that the update is done only on the top bits), but help in the adaptation -- probably by removing a "threshold effect" due to quantization (rounding going to zero) when the gradient is small. Another kludge that seems to work good: when performing the weight update, we only move half the way toward the "goal" this seems to reduce the effect of quantization noise in the update phase. This can be seen as applying a gradient descent on a "soft constraint" instead of having a hard constraint.
2023-01-04 10:47:39 12.81MB enc echo 回声消除
1
样本游戏服务器 tcp游戏echo服务器,客户端发送服务器指定格式的数据格式,服务器获取对应的协议号,走不同的逻辑函数 开始 # Server from core import server s = server . Server (( "127.0.0.1" , 8000 ), 5 ) @ s . route ( "hello_world" ) def hello_world ( request ): request . client . send ({ "c" : "hello world." }) if __name__ == '__main__' : s . serve_forever () # Client import socket from core . server import Server protocol = Server .
2022-12-14 21:55:34 12KB Python
1