Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
DQN算法实现机器学习避开障碍走到迷宫终点。.zip
2024-10-16 13:42:12 256KB
1
Unity杀戮尖塔地图算法实现 项目引擎:Unity 语言:C# 主要实现逻辑 一. 地图房间生成规则 ①房间数量规则 起点层:房间数量动态配置 中间层:房间数量 :{最小值:2 ,最大值起点数量*2-1} boss 层:房间数量=1 ②房间位置 X: 房间在该层平铺后+随机横向偏移 Y:当前层数 * 每层高度+随机纵向偏移 二. 路线生成规则 ①获取当前房间最近的上层房间,将该房间存入当前房间上层对象列表中 ②断路检索:如果下层房间没有任何对象将当前层设置到上层对象列表中,下层距离此层距离最近的对象将此层添加上层对象列表 ③链接当前层和上层对象列表中的对象
2024-10-14 09:57:15 10.3MB unity
1
路径规划算法是计算机科学和人工智能领域中的一个重要课题,它的目标是在复杂的环境中找到从起点到终点的最优或次优路径。蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁寻找食物路径行为的优化算法,它在路径规划问题中表现出色,尤其是在解决多目标和大规模图的路径搜索上。 蚁群算法源于对蚂蚁社会行为的观察,当蚂蚁在寻找食物源和返回巢穴之间移动时,会在路径上留下一种称为信息素的化学物质。其他蚂蚁会根据信息素浓度选择路径,导致高效率路径的信息素积累得更多,形成正反馈机制,最终使得整个蚁群趋向于选择最优路径。在路径规划问题中,我们可以将地图上的节点视为蚁群中的位置,将边权重表示为路径成本,通过模拟蚂蚁的行为来寻找最佳路径。 在基于蚁群算法的路径规划中,主要包含以下几个关键步骤: 1. 初始化:设定每只蚂蚁的起始位置,以及信息素的初始浓度和蒸发速率。 2. 蚂蚁搜索:每只蚂蚁随机地在图中选择下一个节点,选择的概率与当前节点到相邻节点的信息素浓度和距离有关。 3. 更新信息素:所有蚂蚁完成路径后,根据路径的质量(通常为路径长度)更新信息素浓度。优秀路径上的信息素会增加,而较差路径上的信息素会减少。 4. 信息素蒸发:所有路径上的信息素按照一定的速率蒸发,以防止算法陷入局部最优解。 5. 循环迭代:重复步骤2到4,直到达到预设的迭代次数或满足停止条件。 蚁群算法的优势在于其并行性和全局优化能力,但也有缺点,如易陷入早熟(过早收敛到局部最优解)和计算量大等问题。因此,实际应用中通常需要结合其他策略进行改进,如引入启发式信息、动态调整信息素挥发和沉积因子等。 在实现过程中,需要注意以下几点: - 数据结构:构建合适的图数据结构,如邻接矩阵或邻接表,用于存储节点之间的连接和权重。 - 蚂蚁个体:设计蚂蚁的移动策略,如采用概率选择下一个节点的方式。 - 信息素更新:制定合理的信息素更新规则,平衡探索和开发之间的关系。 - 止停条件:设置适当的迭代次数或满足特定条件后结束算法。 文件"路径规划算法_基于蚁群算法实现的路径规划算法"可能包含了蚁群算法的具体实现细节、代码示例、结果分析等内容,这对于理解和掌握该算法的实际应用非常有帮助。通过深入学习这个资料,可以进一步理解如何将蚁群算法应用于实际的路径规划问题,并掌握其优化技巧和应用场景。
2024-10-12 21:42:00 6KB 路径规划 蚁群算法
1
路径规划是计算机科学和自动化领域中的一个重要课题,其目标是在复杂环境中找到从起点到终点的最优或近似最优路径。遗传算法(Genetic Algorithm, GA)是一种启发式搜索方法,来源于生物学中的自然选择和遗传机制,常用于解决优化问题,包括路径规划。本资料主要探讨了如何利用遗传算法来实现路径规划。 遗传算法的基本步骤包括初始化种群、选择、交叉和变异。在路径规划问题中,种群可以理解为一系列可能的路径,每个路径代表一个个体。初始化时,随机生成一组路径作为初始种群。选择操作是根据某种适应度函数(如路径长度)来挑选优秀的路径进行下一代的繁殖。交叉操作模拟生物的基因重组,通过交换两个路径的部分片段来产生新的路径。变异操作则是在路径中随机选取一个节点,将其移动到其他位置,以保持种群的多样性,防止过早收敛。 在路径规划的具体实现中,首先需要对环境进行建模,通常使用图或网格表示。每一步移动对应图中的一个边或网格的一个单元格。然后,定义适应度函数,比如路径的总距离、经过障碍物的数量或时间消耗等。遗传算法的目的是找到适应度最高的路径。 在遗传算法求解路径规划问题时,需要注意几个关键点: 1. 表示路径:路径可以被编码为二进制字符串,每个二进制位代表一个决策,比如是否通过某个节点。 2. 初始化种群:随机生成路径,确保覆盖起点和终点。 3. 适应度函数:设计合适的评价标准,如总步数、避开障碍物的次数或路径的曲折程度。 4. 选择策略:常用的有轮盘赌选择、锦标赛选择等,目的是让优秀路径有更高的繁殖概率。 5. 交叉操作:如单点交叉、多点交叉,确保新路径保留父母的优点。 6. 变异操作:例如随机切换路径上的节点,增加解的多样性。 在实际应用中,遗传算法往往与其他技术结合,如A*算法或Dijkstra算法,用于引导初始种群的生成或局部优化。此外,还可能引入精英保留策略,确保每次迭代至少保留一部分优秀路径,防止优良解丢失。 总结起来,"路径规划算法-基于遗传算法实现的路径规划算法.zip" 文件中提供的内容是关于如何运用遗传算法解决路径规划问题的详细介绍。通过理解和应用这些知识,开发者能够设计出能够在复杂环境中寻找高效路径的智能系统,应用于自动驾驶、机器人导航、物流配送等多个领域。
2024-10-12 21:25:53 181KB 路径规划 遗传算法
1
CRC校验算法是一种广泛应用于数据通信和存储领域的错误检测技术,它的全称为Cyclic Redundancy Check。该算法基于多项式除法原理,通过计算数据的校验码,确保数据在传输或存储过程中未发生错误。CRC的核心思想是生成一个简短的固定位数的校验码,这个校验码是根据原始数据计算出来的,并附加到数据后面。接收方收到数据后,会重新计算校验码并与接收到的校验码进行比较,如果两者一致,则认为数据传输无误。 CRC的计算涉及几个关键参数,包括: 1. WIDTH:表示CRC值的位宽,如CRC-8表示生成的CRC为8位。 2. POLY:这是十六进制的多项式,通常省略最高位1,如x8 + x2 + x + 1,其二进制为100000111,转换为十六进制为0x07。 3. INIT:CRC的初始值,与WIDTH位宽相同。 4. REFIN:表示在计算前是否对原始数据进行翻转。 5. REFOUT:表示计算完成后是否对CRC值进行翻转。 6. XOROUT:计算结果与该值进行异或操作得到最终的CRC值。 在实际计算CRC时,首先确定这些参数。例如,对于CRC-8/MAXIM参数模型,假设原始数据为0x34,多项式为0x31。如果REFIN为true,那么需要先对原始数据进行翻转,再进行其他步骤。在CRC8的计算过程中,当遇到1时才进行异或,而不是1就简单地移位。 CRC的计算通常包括以下几个步骤: 1. 如果REFIN为true,原始数据先进行位翻转。 2. 原始数据左移至与WIDTH相匹配的位数,高位补零。 3. 将处理后的数据与多项式进行模2除法,取余数。 4. 余数与XOROUT进行异或。 5. 如果REFOUT为true,将结果进行位翻转,得到最终的CRC值。 CRC8是CRC的一种变体,用于8位数据的校验。它的校验原理与CRC基本相同,但可能有不同的多项式、初始化值和其他参数。CRC8在数据传输中有着广泛的应用,因为它计算简单,对传输错误有较高的检测率。 CRC还可以扩展到CRC16和CRC32,分别用于16位和32位数据的校验。这些更复杂的CRC版本可以提供更强的错误检测能力,适用于更大的数据块。在C语言中实现CRC算法,可以通过宏定义或其他编程技巧来实现不同CRC参数模型的通用性和可移植性。 CRC校验算法是一种有效的错误检测机制,它利用多项式除法的原理生成校验码,确保数据在传输和存储过程中的完整性。通过理解CRC的参数模型和计算过程,开发者可以针对特定应用选择合适的CRC类型,并在C语言等编程环境中实现相应的算法。
2024-09-12 11:09:23 1.18MB
1
整理了: 一阶RC低通滤波器数学模型推导及算法实现 一阶RC高通滤波器数学模型推导及算法实现 二阶RC低通滤波器数学模型推导 二阶RC高通滤波器数学模型推导 陷波滤波器数学公式推导及算法实现 标准卡尔曼滤波器数学公式推导及算法实现 文中对基础知识进行了注释,适合对遗忘的知识的拾起,文中算法的实现都使用了C++语言,适合移植到嵌入式平台,代码也进行了比较清晰的注释,适合理解。 文中所有公式都是up主手动敲出来的。 up主能力有限,难免有错误,欢迎网友指出和交流。 陷波滤波器代码部分不完整,完整代码放置百度云盘,自取: 链接:https://pan.baidu.com/s/1r6mTPmbRJyTKgvBMdlNdIw 提取码:rntb 本文主要涵盖了四种滤波器的公式推导及算法实现,分别是:一阶RC低通滤波器、一阶RC高通滤波器、二阶RC低通滤波器、二阶RC高通滤波器,以及陷波滤波器和标准卡尔曼滤波器。这些滤波器广泛应用于信号处理和数据分析领域,尤其是在嵌入式系统中。 1. 一阶RC低通滤波器: - 数学模型推导:通过拉普拉斯变换将时域转换为频域,得到传递函数。 - 算法推导:采用一阶后向差分进行离散化,通过采样频率和截止频率计算系数。 - 代码实现:提供了一段C++代码实现了一阶RC低通滤波器。 - 算法验证:通过验证代码来确保滤波器功能的正确性。 2. 一阶RC高通滤波器: - 数学模型推导:与低通滤波器类似,但传递函数有所不同,允许高频信号通过。 - 算法推导和实现:同样使用离散化方法,计算系数并实现滤波算法。 - 算法验证:验证滤波器效果。 3. 二阶RC低通/高通滤波器: - 数学模型推导:扩展一阶模型,增加一个电容或电阻,得到更复杂的传递函数。 - 算法推导:推导离散化形式,计算新的系数。 - 实现未在文本中详述,可能需要参考作者提供的完整代码。 4. 陷波滤波器: - 传递函数推导:设计一个特定的滤波器,以衰减特定频率范围内的信号。 - 算法推导:计算系数并实现陷波滤波算法。 - 代码实现:不完整,完整代码需从链接下载。 5. 标准卡尔曼滤波器: - 前置知识:介绍递归处理、数据融合、相关数学基础和状态空间方程。 - 算法推导:包括卡尔曼增益的计算、先验和后验估计协方差的求解。 - 算法实现:分别展示了适用于一维、二维或多维的卡尔曼滤波器的C++实现。 卡尔曼滤波是一种高级的滤波技术,它结合了动态系统的状态估计和测量数据,通过递归算法处理数据,实现对系统状态的最优估计。滤波器的选择取决于应用场景,低通滤波器用于抑制噪声,陷波滤波器用于去除特定频率干扰,而卡尔曼滤波器则适用于复杂环境下的动态数据处理。
2024-09-12 11:05:55 4.7MB
1
【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-09-10 16:59:48 45.19MB 图像处理
1
【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
一种应用于多车队列控制的分布式模型预测控制算法,该算法能够有效地协调三辆车的行驶,以实现车队的高效和安全行驶。文中详细阐述了算法的原理、实现步骤以及在实际场景中的应用效果。适用于对自动驾驶技术和车辆控制系统感兴趣的工程师、研究人员和学生。使用场景包括但不限于自动驾驶车辆的研发、智能交通系统的构建以及车辆控制算法的教学和研究。目标是提供一个有效的解决方案,以提高多车队列在复杂交通环境中的稳定性和协同性。 关键词标签:分布式控制 模型预测控制 多车队列 自动驾驶
1