内容概要:本文详细介绍了如何利用MATLAB对Buck电路进行PID参数整定。首先,通过定义Buck电路的关键参数(如电感、电容、电阻),构建开环传递函数并绘制Bode图,分析其频率特性。接着引入PI控制器,通过调整比例系数Kp和积分系数Ki,使闭环系统的相位裕度达到45度左右,确保系统既不会震荡又能够快速响应。文中还提供了具体的MATLAB代码示例,展示了如何通过自动化脚本快速锁定合适的PID参数,并在Simulink中进行仿真验证。此外,文章强调了实际应用中需要注意的问题,如PWM载波频率的选择、抗饱和处理以及硬件保护措施。 适合人群:具有一定电力电子和控制系统基础知识的工程师和技术人员。 使用场景及目标:适用于需要对Buck电路进行精确控制的设计场合,特别是希望提高系统稳定性、减少输出电压纹波和改善负载瞬态响应的应用。通过本文的学习,读者可以掌握PID参数整定的基本方法和技巧,为实际项目提供有力支持。 其他说明:本文不仅提供了详细的理论推导和代码实现,还分享了许多实践经验,帮助读者更好地理解和应用所学知识。
2025-09-12 22:52:33 1.67MB MATLAB PID控制 Simulink仿真
1
内容概要:本文详细介绍了光伏储能系统中各个关键组件的工作原理和技术实现。首先探讨了光伏端的Boost电路及其采用电导增量法进行最大功率点跟踪(MPPT)的技术细节。接着讨论了储能端的Buck-boost双向DCDC电路,解释了其在不同情况下如何实现充放电转换以及确保直流母线电压稳定的控制策略。对于并网逆变器部分,则着重讲述了PQ控制的具体实现方法,特别是电流内环的动态响应优化措施。最后,针对离网模式下的VF控制进行了深入解析,强调了频率-有功和电压-无功下垂控制的应用,并详细描述了并离网切换过程中需要注意的问题及解决方案。 适合人群:从事电力电子、新能源发电领域的研究人员、工程师和技术爱好者。 使用场景及目标:帮助读者深入了解光伏储能系统内部各模块之间的协作机制,掌握具体的设计思路和技术要点,从而能够更好地应用于实际项目开发中。 其他说明:文章不仅提供了理论分析,还结合了大量的实际案例和实验数据,使得内容更加丰富实用。此外,文中涉及到的一些关键技术如MPPT算法、双向DCDC控制、PQ控制、VF控制等均为当前研究热点,值得深入学习。
2025-09-11 23:13:01 809KB
1
"光伏储能与三相并离网逆变切换运行模型详解:Boost、Buck-boost双向DCDC控制、PQ与VF控制及孤岛检测自动切换技术",光伏储能+三相并离网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 离网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、离网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并离网逆变切换; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,光伏储能系统:四控部分与双向DCDC的并离网运行模型【含操作图解】
2025-09-11 22:53:38 667KB 数据仓库
1
光伏储能与三相并离网逆变切换运行模型:Boost、Buck-boost双向DCDC控制、PQ与VF控制策略及孤岛检测自动切换技术笔记,光伏储能+三相并离网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 离网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、离网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并离网逆变切换运行模型; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,"光伏储能系统:四控部分协同运行模型及MPPT最大功率追踪"
2025-09-11 22:52:08 650KB
1
光伏储能与三相并离网逆变切换运行模型:Boost、Buck-boost双向DCDC控制、PQ与VF控制策略及孤岛检测自动切换技术笔记,光伏储能与三相并离网逆变切换运行模型:Boost、Buck-boost双向DCDC控制、PQ与VF控制策略及孤岛检测切换机制介绍,光伏储能+三相并离网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 离网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、离网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并离网逆变切换; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,光伏储能系统:四控部分与双向DCDC的并离网运行模型【含操作图解】
2025-09-11 22:51:25 2.29MB edge
1
在现代电力电子技术领域中,Fly-Buck转换器是一种广泛应用于隔离型电源的拓扑结构,它能够在输入和输出之间提供电气隔离,同时保持高效率和高功率密度。Fly-Buck转换器的核心在于其能够利用变压器进行能量传递,并通过一个简单的反馈机制来控制输出电压。在本文中,我们将详细探讨反馈补偿电路在Fly-Buck转换器中的应用,并分析其对二次侧稳压效果的改善。 我们需要了解Fly-Buck转换器的基本工作原理。Fly-Buck是一种基于反激式转换器原理的拓扑,它通过在变压器的一次侧和二次侧之间引入一个电感来实现能量的耦合和传输。在Fly-Buck转换器中,一次侧和二次侧的电压关系是通过变压器的匝数比来确定的。然而,由于元件的非理想特性,实际应用中会出现输出电压的偏差,这需要通过引入反馈补偿电路来校正。 反馈补偿电路的作用在于监控输出电压,并通过反馈环路的控制机制来调整Fly-Buck转换器的工作状态,以保证输出电压的稳定。通常,反馈电路包含反馈网络和误差放大器两个部分。反馈网络用于隔离反馈信号并确定反馈补偿电路的频率特性,而误差放大器则用于放大反馈信号中的误差电压,提供必要的增益来调整输出电压。 在本文中提到的特定案例中,外部补偿电路利用了光耦合器来实现反馈隔离,而并联稳压器LM431A则被用作误差放大器。光耦合器是一种能够提供电气隔离的元器件,它通过光信号传递信息,从而避免了电路中的直接电气连接,这对于隔离式电源系统而言至关重要。LM431A是一款可控基准电压源,它能够提供稳定的基准电压,并具备较高的放大能力,这使得它非常适合用作误差放大器。 此外,本文中提到的典型I类补偿网络由电容C1和电阻R1组成,它具有确定反馈补偿电路截止频率的作用。I类补偿网络能够提供高直流增益,从而减少低频时的稳压误差。通过适当选择电容和电阻的值,可以设定反馈补偿电路的频率响应特性,从而优化整体转换器的性能。 在Fly-Buck转换器的实际应用中,反馈补偿电路的效果非常显著。通过引入补偿电路,二次侧输出电压的稳定性得到了显著改善。在原型LM5017电路中,二次输出电压在不同负载条件下出现了负梯度,而添加补偿电路后,这种现象得到了有效控制。随着输入电压的变化,二次输出电压能够更接近其额定值,这表明补偿电路对于改善输出电压的稳压性能有明显的效果。 需要注意的是,虽然二次侧的稳压性能得到了改善,但是这种改善是以牺牲一次侧输出稳压性能为代价的。这是因为Fly-Buck转换器中一次侧和二次侧的输出电压基本关系是相互依赖的,一次侧的稳定直接影响二次侧的输出。因此,在设计反馈补偿电路时,必须考虑这种相互影响,并且在实际应用中需要在一次侧和二次侧之间找到一个平衡点。 反馈补偿电路对于提高Fly-Buck转换器的稳压性能至关重要,尤其是在二次侧输出电压稳定性要求较高的应用场合。通过合理设计反馈补偿电路,不仅可以提升电源系统的性能指标,还能有效地满足用户对电源品质的需求。在进行相关设计和应用时,工程师们需要充分考虑转换器的特性,以及反馈补偿电路与电源系统整体性能之间的相互作用,以确保电路能够达到预期的性能目标。
2025-09-05 22:25:08 226KB LM5017 Fly-Buck 课设毕设
1
基于Mathcad14.0的Buck电路设计工具:规格参数自定义,损耗与效率计算,开关电源优化分析,Buck电路设计与开关电源工具:规格参数自定义,计算结果自动生成,开关元件及无源器件选型,损耗与温升精细计算,电路优化对比不同电压频率下的性能表现(基于Mathcad 14.0),Buck电路设计,开关电源学习工具,可以根据需求修改电路的规格参数,计算书自动生成计算结果,可以进行开关管及无源器件的选型,损耗及温升计算。 附赠两个电路优化计算书,可以对比不同电压或者频率下Buck电路的优劣。 基于Mathcad14.0 开关电源计算书,损耗计算,效率计算,温升计算,电感计算,电容选型,开关管选型。 ,Buck电路设计; 开关电源学习工具; 修改电路规格参数; 计算书自动生成; 开关管选型; 无源器件选型; 损耗计算; 温升计算; 电路优化计算书; 不同电压/频率对比; Mathcad14.0; 开关电源计算书; 效率计算; 电感计算; 电容选型。,基于Mathcad14.0的Buck电路设计与开关电源学习工具:规格参数可定制,效率温升全计算
2025-08-22 17:35:36 1.27MB istio
1
Buck-Boost变换器实现PFC和半桥驱动输出pdf,用Buck-Boost变换器实现PFC和半桥驱动输出
2025-07-30 09:40:19 1.44MB 开关电源
1
三电平Buck变换器仿真模型:PWM控制方式与多种闭环控制策略,含单向与双向结构,Matlab Simulink与Plecs运行环境文件齐全,三电平Buck变换器仿真模型:PWM控制及多种闭环方式(含开环控制、双向结构,适用于Matlab Simulink和Plecs运行环境),三电平buck变器仿真模型 采用PWM控制方式 模型内包含开环控制和闭环控制 闭环控制包含输出电压闭环和输出电压电流双闭环两种方式 单向结构和双向结构都有 联系请注明需要哪种结构 matlab simulink plecs等运行环境的文件都有 ~ ,三电平Buck变换器; PWM控制; 开环控制; 闭环控制; 输出电压闭环; 输出电压电流双闭环; 单向结构; 双向结构; Matlab Simulink; PLECS文件。,三电平Buck变换器PWM控制仿真模型:开环与闭环输出电压电流双环控制
2025-07-28 18:19:56 1.18MB 柔性数组
1
在电力电子领域中,BUCK拓扑作为一种广泛使用的DC-DC转换器,其功能是降低直流电压。随着数字控制技术的发展,数字电源系统已经逐渐取代了传统的模拟控制系统。PLECS(Piecewise Linear Electrical Circuit Simulation)是一款强大的电力电子系统仿真软件,特别适合进行复杂电源系统的建模和仿真。本文将详细介绍如何使用PLECS软件对基于BUCK拓扑的数字电源进行仿真。 BUCK转换器的基本工作原理是通过开关元件的周期性通断,将输入的直流电压转换为所需的较低直流电压输出。它由几个基本组件构成,包括开关管、二极管、储能电感、滤波电容和负载。开关管通常是MOSFET或IGBT,负责控制电路的导通与关断;二极管作为自由轮功能,用于续流;储能电感和滤波电容则用于平滑输出电压和电流,减少纹波。 在PLECS中进行BUCK拓扑的数字电源仿真时,可以采取模块化的设计思路。根据BUCK转换器的结构,在PLECS中搭建电路模型,包括输入直流电压源、开关模块、电感、电容和负载。接着,需要为这个电路模型添加数字控制环节,这是数字电源仿真区别于传统模拟仿真之处。数字控制器通常包括一个或多个数字信号处理器(DSP)、微控制器(MCU)或者其他形式的数字处理单元。 在数字控制器的设计过程中,通常会用到数字控制算法,比如PID控制、状态空间控制等。这些控制算法需要编写相应的代码,并在PLECS中通过DLL(Dynamic Link Library,动态链接库)调用实现。PLECS软件支持通过DLL将Matlab/Simulink中开发的控制算法与PLECS的电路模型相结合,这使得PLECS能够模拟真实的数字控制器对电源系统的控制效果。 在本次的仿真案例中,提供了两个PLECS文件:BUCK_DI.plecs和BUCK_AN.plecs。这两个文件很可能分别代表了数字控制和模拟控制下的BUCK转换器仿真模型。通过对比这两个文件,可以观察到数字控制相比于模拟控制的优势和特点,比如更精确的控制性能、更好的动态响应能力以及更方便的参数调整等。 此外,PLECS仿真中还可能包括对BUCK转换器在不同工作条件下,如不同负载、不同开关频率以及不同输入电压下的性能测试。这样可以全面地评估数字电源系统的性能,确保系统设计满足要求。在仿真实验中,通常还会分析系统的稳定性、效率、输出电压和电流的纹波大小等关键指标。 PLECS软件提供了一个高效、直观的平台,使得工程师能够对基于BUCK拓扑的数字电源进行详尽的设计和仿真。通过模拟真实的工作条件和控制策略,可以显著减少实物原型的测试次数,节省研发时间和成本,提高设计的成功率。
2025-07-19 16:18:12 1.17MB PLECS仿真 Dll调用
1