贝叶斯线性回归 通过(正常)线性回归和贝叶斯线性回归对数据建模的示例程序。 并显示图表以比较这两者。 环境 Python 2.7.6 麻木 Matplotlib 跑步 $ python bayesian_lr.py 图形 绿色:正态线性回归 蓝色:贝叶斯线性回归 逻辑 功能大致如下: 使用“高斯分布”作为基函数。 假设 s = 0.1,c_i = [0.0, 0.1, ..., 1.0]。 (1) 正态线性回归 这些“欧米茄”可以通过这个方程求解。 (2)贝叶斯线性回归 后验分布表示如下。 后验分布是高斯分布,所以最可能的值是: 因此,可以通过计算 Mu_N 来找出函数。 这一次,我假设 alpha = 0.1,beta = 9.0。 Phi 是如下矩阵。 麻木 numpy.linalg.solve :求解线性矩阵方程。 参考 numpy.dot :标量积,内
1