本课程为光电信息科学与工程专业光电显示技术方向的基础实验课,该课程含16学时实验教学。编者根据课程大纲,结合实验室硬件条件及实际教学效果,调整优化教学内容,并不断自制,开发LED混色驱动电路板、笔段LCD驱动电路板等多种教学仪器,初步形成了较为完善的理论和实践教学体系。现在将实验指导书编辑成册,供本专业学生使用。由于时间仓促,有不当和错误之处,请大家及时指出,以便改进。   本文档的主要内容详细介绍的是光电显示技术的六个实验的指导书资料,主要内容包括了:实验一 使用Photoshop软件制作十二色和二十四色色相环 ,实验二 基于LED的空间混色特性研究 ,实验三 液晶电光效应实验 ,实验四 液晶相变的光学表征实验 ,实验五 笔段型LCD的静态驱动 ,实验六 无源矩阵OLED显示屏设计 《无源矩阵OLED显示屏设计方案》是一门针对光电信息科学与工程专业学生的实验课程,旨在深入理解光电显示技术。这门课程包含16个学时的实验教学,旨在结合理论与实践,让学生对光电显示技术有更直观的认识。在课程实施过程中,教师不仅依据课程大纲进行教学,还充分利用实验室资源,开发了一系列教学设备,如LED混色驱动电路板和笔段LCD驱动电路板,以丰富教学手段,构建了一个相对完整的教学系统。 实验内容涵盖多个关键领域,其中包括: 1. 实验一:使用Photoshop软件制作十二色和二十四色色相环。这一实验目标是让学生熟悉Photoshop的基本操作,同时理解色彩混合的基本原理,为后续的色彩显示技术打下基础。 2. 实验二:基于LED的空间混色特性研究。通过此实验,学生能够掌握空间混色的理论,了解不同颜色LED如何组合以产生丰富的色彩效果,这对于理解和设计OLED显示屏至关重要。 3. 实验三:液晶电光效应实验。实验内容涉及初始光路的调节、液晶电光特性的测量以及时间响应和视角特性的测试。这些实验环节有助于理解液晶显示器的工作原理和性能特点。 4. 实验四:液晶相变的光学表征实验。这个实验帮助学生观察和分析液晶材料在电场作用下的相态变化,以及这些变化如何影响其光学性质。 5. 实验五:笔段型LCD的静态驱动。这一部分将让学生掌握如何驱动笔段式液晶显示器,理解其显示原理,这对于理解有源矩阵和无源矩阵OLED显示屏的驱动机制具有参考价值。 6. 实验六:无源矩阵OLED显示屏设计。这个实验的核心是让学生亲手设计并实现无源矩阵OLED显示屏,从而深入了解OLED的构造、驱动方式和显示效果,这是光电显示技术中的一个重要应用实例。 通过这些实验,学生不仅能掌握光电显示技术的基本理论,还能通过动手操作,培养实践能力和问题解决能力,为未来在光电领域的研究和开发奠定坚实基础。课程编者强调,由于时间紧迫,教材可能存在不足,期待师生共同反馈,持续优化教学内容。
2024-11-30 17:55:07 8.86MB
1
STM32是一款基于ARM Cortex-M内核的微控制器系列,由意法半导体(STMicroelectronics)生产。在本项目中,STM32被用来驱动DS3231高精度实时时钟模块,并通过OLED显示屏展示时间。DS3231是一款具有内置晶体振荡器和电池备份电源的RTC(实时时钟)芯片,能够提供高精度的时间保持功能,即便在主电源断开的情况下也能维持准确的时间。 项目的核心是STM32与DS3231之间的通信。DS3231通常通过I2C接口与微控制器进行通讯。I2C是一种多主设备总线协议,允许多个设备共享同一组数据线进行双向通信。在STM32中,I2C通信通常涉及到设置GPIO引脚为I2C模式,配置I2C外设,初始化时钟,然后发送和接收数据。 你需要配置STM32的GPIO引脚,将它们设置为I2C模式,通常为SDA(串行数据线)和SCL(串行时钟线)。这涉及到设置GPIO的速度、模式和复用功能。接着,你需要配置I2C外设,包括设置时钟频率、使能I2C外设、设置地址宽度等。 在DS3231的使用中,你需要知道其7位I2C地址,通常是0x68。通过发送特定的命令,你可以读取或写入DS3231的寄存器,这些寄存器包含了日期、时间、控制和状态信息。例如,要设置时间,你需要写入相应的寄存器;要读取当前时间,你需要先发送一个读取命令,然后接收数据。 OLED显示屏通常使用SSD1306或SH1106等控制器,它们同样通过I2C或SPI接口与STM32连接。OLED显示模块由多个有机发光二极管组成,每个像素可以独立控制,提供了清晰且对比度高的显示效果。在STM32上驱动OLED,你需要加载相应的库,比如U8g2,来处理显示初始化、画点、文本显示等操作。 项目中的源代码可能包括以下部分: 1. 初始化函数:配置STM32的GPIO和I2C外设,以及OLED的初始化。 2. 与DS3231通信的函数:读取和写入DS3231的寄存器,获取当前时间。 3. 时间格式化函数:将从DS3231读取的二进制时间转换为易读的12或24小时格式。 4. OLED显示函数:在OLED屏幕上显示格式化后的时间。 通过这个项目,开发者可以学习到STM32的硬件接口设计、I2C通信协议的应用以及如何在嵌入式系统中实现数字时钟的显示。同时,对于初学者来说,这也是一个很好的练习,可以帮助他们理解嵌入式系统中的实时性、通信协议和人机交互设计。
2024-11-19 20:04:03 19.36MB stm32
1
Arduino IDE 2.0.0 是 Arduino 开发平台的一个重大更新,它引入了许多新功能和改进,旨在提供更高效、更现代的编程体验。相比于早期版本,2.0.0 版本对用户界面进行了优化,支持代码自动完成,增强了多文件项目管理,并且能够更好地兼容各种微控制器,包括 ESP32。 ESP32 是一款高性能、低功耗的Wi-Fi和蓝牙双模集成芯片,被广泛应用于物联网(IoT)项目。在 Arduino 环境中,ESP32 的库和硬件支持使得开发者可以轻松地利用其强大的处理能力和无线通信功能。 在描述中提到的 ESP32 1.0.5 是针对该芯片的特定固件版本,这个版本可能修复了之前的某些问题,增强了稳定性和兼容性。对于初学者和专业开发者来说,确保使用最新或适合自己项目的固件版本是至关重要的。 离线安装包的使用方法如下: 1. **下载并安装 Arduino IDE 2.0.0**: 从官方网站或者提供的链接下载 Arduino IDE 2.0.0 的安装程序。安装过程中,遵循向导指示,选择合适的安装路径,确保安装完成后能正常启动 IDE。 2. **添加 ESP32 支持**: 离线安装 ESP32 1.0.5 的过程通常是通过解压提供的压缩包,然后将解压后的库文件复制到 Arduino IDE 的特定目录。通常,这个目录位于用户的 Documents/Arduino/hardware 目录下。解压后,找到 ESP32 的硬件配置文件夹,将其移动到对应的 hardware 子目录。 3. **配置 Arduino IDE**: 启动 Arduino IDE 2.0.0,打开“首选项”设置,输入 ESP32 的板管理器URL(如果压缩包中包含了板管理器的本地副本,则可以跳过此步骤)。接着,在 "开发板" 下拉菜单中选择 "ESP32 Dev Module",确保 IDE 已经识别到 ESP32 的硬件。 4. **编译与上传程序**: 现在,你可以编写 ESP32 项目代码,使用 IDE 内置的代码编辑器。完成编写后,连接 ESP32 开发板至电脑,IDE 应该能够检测到设备。点击 "上传" 按钮,IDE 将编译代码并将其发送到 ESP32,实现程序的烧录。 5. **测试与调试**: 一旦程序成功上传,ESP32 开发板将运行新代码。通过串行监视器(Serial Monitor)可以查看输出信息,进行实时调试。若遇到问题,可以查看错误日志或在线社区获取帮助。 总结来说,这个离线安装包是为了方便用户在没有网络的情况下也能快速搭建 Arduino IDE 2.0.0 和 ESP32 1.0.5 的开发环境。这有助于开发者专注于编程,而不受网络条件限制,提高了开发效率。记得在使用过程中保持 Arduino IDE 和 ESP32 固件的更新,以便获得最佳性能和兼容性。
2024-11-16 17:02:40 269.54MB ArduinoIDE
1
Arduino_driver_software_for_the_HackEEG_TI_ADS1299_hackeeg-driver
2024-11-15 09:48:10 428B
1
HackEEG_TI_ADS1299_Arduino_shield_hardware_design__hackeeg-shield
2024-11-15 09:47:39 7.27MB
1
_ADS1299-Arduino-Driver
2024-11-15 09:46:30 9KB
1
STM32F407是意法半导体(STMicroelectronics)推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统设计。该核心板基于ARM Cortex-M4内核,拥有丰富的外设接口和强大的计算能力,特别适合于实时控制和数据处理任务。在本项目中,STM32F407被用于实现多种功能,包括OLED显示、MPU6050传感器数据采集、心率检测以及蓝牙通信。 OLED(有机发光二极管)显示模块通常用于实时展示系统状态和数据。它具有高对比度、快速响应时间以及低功耗的特点,使得它成为嵌入式系统中理想的显示设备。在STM32F407的驱动下,可以实现图形化界面,显示步数、心率等关键信息。 接着,MPU6050是一款集成的惯性测量单元(IMU),包含三轴加速度计和三轴陀螺仪,能够检测设备的运动和姿态变化。在本项目中,其主要用来获取X轴的角度信息。通过读取MPU6050的数据,STM32F407可以计算出设备的倾斜角,这对于步态分析或者运动追踪至关重要。 心率检测部分采用了MAX30102传感器,这是一款光学心率传感器,集成了红外和红色LED以及光敏探测器,可以非侵入式地测量血流中的光吸收变化,从而推算出心率。STM32F407通过I2C或SPI接口与MAX30102通信,采集信号并进行处理,最终得出心率值,为健康监测提供数据支持。 蓝牙通信功能使得设备可以通过无线方式与其他蓝牙设备交互,例如手机。这通常需要用到蓝牙低功耗(Bluetooth Low Energy, BLE)协议,STM32F407内置了蓝牙硬件模块,可以方便地实现数据发送和接收,进而实现计步和心率数据的远程传输,用户可以在手机上实时查看和记录这些健康数据。 这个项目结合了STM32F407的强大处理能力、OLED的直观显示、MPU6050的运动传感、MAX30102的心率监测以及蓝牙的无线通信,形成了一套完整的可穿戴健康监测系统。这样的设计不仅展示了嵌入式系统的多元化应用,也为个人健康管理提供了便利的技术支撑。
2024-10-22 18:02:21 12.19MB
1
项目详情请参见:https://handsome-man.blog.csdn.net/article/details/124972184 利用LIAT函数库通过LabVIEW和Arduino Uno控制板实现对单个舵机转动角度的控制。 LabVIEW程序首先通过设置的串口号与Arduino Uno控制板建立连接,然后调用Servo函数库中的Set Number of Servo和Configure Servo函数节点以设置舵机的数目为1、2和舵机的连接引脚,接着进入While循环并不断调用Servo Write Angle和Servo Read Angle函数节点先向舵机写入转动的角度值,并读取舵机当前的角度值。最后,断开与Arduino Uno控制板的连接。 项目可直接运行~
2024-10-21 17:10:07 1.74MB LabVIEW Arduino
1
ESP8266超全工具包是一套专为开发者设计的综合资源集合,旨在帮助用户在基于ESP8266微控制器的项目中进行高效开发和调试。这个工具包涵盖了从固件到软件开发环境的各种必备组件,让我们逐一探讨这些关键元素。 **AT固件**是ESP8266的命令行接口,通过它,用户可以控制模块的网络功能,如Wi-Fi连接、数据传输等。AT指令集是通用的,使得开发人员能够轻松地与不同类型的无线模块进行交互,无需深入了解底层硬件细节。 **安可信串口调试工具**是另一个重要的组成部分,它允许用户通过串口与ESP8266进行通信,进行固件升级或调试。这个工具提供了一个友好的界面,可以实时查看和发送AT指令,帮助开发者快速定位问题。 **刷固件工具(flash)**是用于更新ESP8266固件的关键程序。通常,这涉及到将新的代码烧录到芯片的闪存中,以便执行不同的任务或实现新功能。这个工具简化了固件升级过程,确保安全无误地完成。 **tcpudp测试工具**则是用来测试ESP8266的TCP/IP协议栈功能的,它可以帮助开发者验证模块的网络通信能力,包括TCP连接、UDP数据包发送和接收等,确保网络应用的正确性。 **Arduino 1.8平台版本**是嵌入式开发的常用平台,它为ESP8266提供了丰富的库和简单易用的编程环境。Arduino IDE使得编写和上传代码到ESP8266变得极其方便,尤其适合初学者和快速原型开发。 **ESP8266 2.7.4依赖库**是专门为Arduino平台设计的,包含了ESP8266模块所需的特定库文件,如WiFiClient、WebServer等。这些库支持各种网络功能,如HTTP服务器、客户端、MQTT协议等,让开发者能够构建复杂的应用程序。 **Python2.7环境包**可能包含了一些用于ESP8266的Python脚本开发或远程控制的工具。Python是一种强大的高级编程语言,可以用于编写更高级别的应用程序逻辑,与ESP8266通过串口或其他方式交互。 ESP8266超全工具包是一个全面的开发资源集合,它提供了从基础固件到高级开发环境的一切所需,大大简化了基于ESP8266的IoT项目开发流程,无论是新手还是经验丰富的开发者都能从中受益。通过合理利用这些工具,用户可以高效地进行设备配置、网络调试和应用程序开发,从而充分发挥ESP8266的潜力。
2024-10-01 00:05:46 187.52MB ESP8266 Arduino
1
Arduino驱动人声语音合成功能是电子制作和物联网项目中常用的一种技术,它允许设备通过预编程的方式发出清晰的人类语音。在这个特定的案例中,我们关注的是SNR9816TTS模块,这是一种集成的语音合成解决方案,通常用于各种Arduino项目中,如智能家居、教育玩具或交互式装置。 SNR9816TTS模块是一款基于文本到语音(TTS)技术的芯片,它可以将输入的字符或字符串转化为可听的声音输出。该模块的优点在于其灵活性和可编程性,用户可以通过发送不同的指令来控制发音的语速、音调和音量。此外,SNR9816TTS还支持多种语言,使得它可以适应全球范围内的应用需求。 在 Arduino 上驱动SNR9816TTS,首先你需要确保你的开发环境已经安装了Arduino IDE,并且连接了对应的串口通信库。Arduino IDE提供了一个友好的编程界面,使得编写和上传代码变得简单易行。在项目中,你需要找到并安装SNR9816TTS的库文件,这些库通常由社区开发者维护,可以在Arduino库管理器中搜索获取,或者直接从开发者网站下载。 一旦库文件安装完毕,你就可以开始编写代码了。基本的流程包括初始化模块,设置通信参数(如波特率),然后编写函数来发送命令和数据。例如,你可以创建一个函数来设定要合成的文本,以及控制发音的参数。在代码中,你需要使用Serial.write()函数将指令发送到模块,根据模块的数据手册,每个命令都有特定的字节格式。 在描述中提到的“包含所有程序”,这可能指的是压缩包中包含了完整的示例代码、库文件和其他必要的资源。这些程序可能是演示如何使用SNR9816TTS的基本功能,如播放预定义的语音,或者从Arduino串口接收数据并转换为语音。当你解压文件后,可以通过Arduino IDE打开这些示例,然后直接上传到你的Arduino板上,以快速体验模块的功能。 文件名"voice"可能表示这个压缩包中包含了与声音相关的文件,如音频样本或配置文件。这些文件可能会被用于模块的初始化或测试,比如加载特定的语音库或设置发音参数。 总结来说,Arduino驱动SNR9816TTS模块涉及到的关键知识点包括: 1. Arduino编程基础:理解和使用Arduino IDE,安装和管理库。 2. 文本到语音(TTS)技术:理解SNR9816TTS模块的工作原理,如何发送指令控制语音合成。 3. 串口通信:使用Serial库进行模块与Arduino之间的数据传输。 4. 库文件使用:找到并正确安装SNR9816TTS的库,学习其提供的函数和示例代码。 5. 示例程序:分析和运行提供的示例代码,理解其工作流程。 通过以上步骤,你可以成功地使用Arduino驱动SNR9816TTS模块,实现各种有趣的语音合成项目。
2024-09-30 18:24:03 28KB 语音模块
1