【uni云开发(人脸识别签到)】 在当前的数字化时代,人脸识别技术已经广泛应用于各种场景,包括门禁系统、支付验证、签到管理等。uni-app结合云开发,可以实现高效便捷的人脸识别签到系统,为企业或活动提供智能化的管理方案。本教程将深入探讨如何利用uni-app和云开发实现这一功能,以及如何集成百度AI的人脸识别服务。 uni-app是一款多端开发框架,允许开发者编写一次代码,即可在iOS、Android、H5等多个平台运行。它基于Vue.js语法,具有轻量、高效的特点,非常适合快速构建移动应用。在uni-app中集成云开发,可以充分利用云数据库、云存储和云函数等功能,降低后端开发复杂性。 云开发(CloudBase)是腾讯云推出的一种免运维的后端服务平台,它提供了数据库、文件存储、函数计算等基础服务,让开发者能专注于业务逻辑,而无需关注服务器运维。在uni-app中接入云开发,可以轻松实现数据的云端存储和处理,对于人脸识别签到这种实时性强、数据处理量大的应用尤为适用。 接着,我们引入百度AI的人脸识别服务。百度AI提供了丰富的AI能力,包括人脸检测、特征提取、人脸识别比对等。通过调用其API,可以在客户端获取用户的人脸图像,然后上传到云端进行处理,从而完成签到验证。需要注意的是,要正确配置百度AI的API密钥,并在uni-app中安全地使用这些密钥。 在实际开发过程中,以下步骤是必不可少的: 1. **设置环境**:在uni-app项目中,配置云开发环境,创建云数据库、云存储空间,并为云函数编写签到验证逻辑。 2. **人脸识别**:使用uni-app的摄像头接口获取用户的人脸图像,调用百度AI的SDK或API进行人脸检测和特征提取。 3. **数据上传**:将提取到的人脸特征数据上传到云开发的数据库,同时保存用户的其他信息,如姓名、ID等。 4. **比对验证**:当用户签到时,从数据库获取已注册的人脸特征,与当前人脸进行比对。如果匹配成功,记录签到信息;如果不匹配,则提示错误。 5. **结果展示**:在前端界面实时显示签到状态,可以是成功、失败或相似度评分,以便用户了解签到情况。 6. **安全性考虑**:为了保护用户隐私,人脸数据应加密存储,并在传输过程中使用HTTPS等安全协议。同时,避免在客户端存储敏感信息。 uni-app结合云开发和百度AI人脸识别,能够实现高效、安全的签到系统。通过这种方式,不仅可以提升用户体验,也能有效防止冒名签到的情况发生。在实际项目中,可以根据需求进行功能扩展,比如添加多人签到、后台管理等功能,以满足不同场景的需求。
2024-11-17 15:50:46 78.22MB uni-App 百度AI 人脸识别
1
AI换脸是指利用基于深度学习和计算机视觉来替换或合成图像或视频中的人脸。可以将一个人的脸替换为另一个人的脸,或者将一个人的表情合成到另一个人的照片或视频中。算法常常被用在娱乐目上,例如在社交媒体上创建有趣的照片或视频,也有用于电影制作、特效制作、人脸编辑工具和虚拟现实。但也有可能被滥用,用于欺骗、虚假信息传播或隐私侵犯。 随着AI换脸技术的广泛应用,这也引起很多的关注和担忧,因为它可以用于制造虚假的视频内容,可能导致社会和政治问题。AI换脸技术也会引发法律和伦理问题,包括隐私问题和身份验证问题。滥用这些技术可能导致个人的声誉受损,也可能用于欺骗和诈骗。 AI换脸技术不断发展,变得越来越先进的同时,也有研究人员和技术公司努力开发检测和防御AI换脸的方法,以应对滥用和虚假信息传播的问题。 这里结合实现了一些常用的AI换脸技术,从人脸检测到人脸关键点检测,再到AI换脸,然后使用算法进行人脸修复和超分,以便大家更好的了解AI换脸这个智能算法,只能全面的理解才能做到更好的防范。
2024-04-12 14:54:04 74.04MB 人工智能
1
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件) 用到技术:Flask + OpenCV-Python + Keras + Sklearn 压缩包中包括:照片样本采集源码、深度学习和训练源码、人脸识别相关源码、Flask实现人脸识别接口等。 通过浏览器上传图片,或者打开摄像头即可识别。
2024-04-08 15:09:37 147.6MB 深度学习 人工智能 python3
1
建议先看说明:https://blog.csdn.net/qq_33789001/article/details/129622266 在抖音上玩的猫脸特效完全可以通过制作猫脸的贴图的效果来模仿它的效果。于是收集了很多贴图,加上我的超低的ps技术处理后,实现了这个算是换脸功能相对完善的工程。 这里基于mind-ar-js-master\examples\face-tracking\example1.html案例修改而来,主要是将部分托管在cdn服务器的脚本库进行了本地化关联(解决加载太慢的问题)和然后UI上新增了各个面部贴图的小图按钮,通过点击对应面部贴图按钮后切换对应的效果。 我这里采用直接修改网页地址的face参数进行切换面部贴图效果,然后在网页加载场景创建的时候先解析face参数,没有face参数则直接使用默认面部贴图,加载贴图,创建faceMesh,并设置材质贴图。这一步主要就是找素材,然后将素材和标准的人脸模型可视化uv贴图进行脸部的贴合,详情的说明建议看前言中的博客内容。手机上不能使用该功能成功的问题依然存在。
使用Yolo神经网络实现人脸检测完整程序(测试通过)
2022-12-20 17:22:07 284.48MB AI 人脸识别
1
本数据集包含一万多对人脸图片,每一对中包含两张图片,分别为添加高斯噪声后的人脸图片和未添加任何噪声的原人脸图像,可以用来进行人脸相似度比对项目。
2022-12-02 19:28:12 142.08MB AI 人脸识别 深度学习
1
CASIA-WebFace 数据 4.1G
2022-07-11 19:15:14 137B AI 人脸识别
1
截图:https://ccc.huinenglingdong.top/?type=productinfo&id=380 前端未加载到主页程序,其它页面可以加载
2022-07-02 14:06:45 11.15MB ai人脸 漫画脸 小程序 源码
流量主系列微信AI人脸转换小程序源码.rar
2022-06-23 11:05:42 345KB 小程序源码
AI换脸代码 想要我文章版本链接的,私聊我,人多的话那回不过来!记得赞赞一下嘛! 最新版本我试了一下,在win10/11电脑上会有无法训练的问题,因此还是推荐使用文章的版本。 最近这几年视频换脸十分流行,在B站常有up主上传自己恶搞的AI换脸视频。当然,PS修图一直都是热点,但PS常用于P一张图。而网上看到的,比如将迪丽热巴演的某片段换成了鹿晗的脸(没有其他意思,确实有这些恶搞)??以至于以假乱真,这些都是咋做到的呢?其实就是使用到了强大的AI技术:AI+“造假”混合,就产生了“深度造假”。 Deepfakes,一种混合“深度学习”和“造假” 的合成技术 ,其中一人的现有图像或视频被替换为其他人的肖像。Deepfakes利用了机器学习和人工智能中的强大技术来生成具有极高欺骗力的视觉和音频内容。用于创建的主要机器学习方法是基于深度学习的训练生成神经网络,如生成对抗网络GAN。 按照维基的资料,Deepfakes这个词起源于2017年底,来自Reddit用户分享了他们创建的“深度造假”产品。2018年1月,启动了名为FakeApp的桌面应用程序。此应用程序使用户可以轻松创建和共
2022-05-22 21:06:46 75.89MB 人工智能 python 综合资源 开发语言