安全帽检测数据集是针对工业安全领域的一个重要资源,它主要包含了5000张PNG格式的图片,这些图片经过精心处理,具有416×416像素的分辨率,适用于深度学习中的目标检测任务。这个数据集特别设计用于YOLO(You Only Look Once)算法,这是一种高效且实时的目标检测框架。 YOLO是一种基于深度学习的一阶段目标检测方法,由Joseph Redmon等人在2016年提出。它的核心思想是在单个神经网络中同时进行类别预测和边界框定位,这使得YOLO在速度和精度之间取得了良好的平衡。对于工业安全场景,如建筑工地或矿山,确保工人佩戴安全帽至关重要。因此,利用这样的数据集训练YOLO模型,可以实现自动检测工人是否正确佩戴安全帽,从而提高工作场所的安全性。 数据集的组织结构通常包括训练集和测试集。训练集用于训练模型,而测试集则用来评估模型在未见过的数据上的性能。在这个案例中,这5000张图像可能已经被划分成这两个部分,以确保模型在训练过程中的泛化能力。"images"文件夹可能包含了所有图片,而"labels"文件夹则可能存储了对应的标注信息,每张图片的标注通常是一个文本文件,列出了图片中安全帽的位置(以边界框的形式表示)和类别信息。 在训练过程中,首先需要将这些PNG图像加载到YOLO模型中,通过反向传播优化模型参数,以最小化预测边界框与实际边界框之间的差距。数据增强技术,如随机翻转、缩放和旋转,常被用来扩充数据集,防止过拟合。训练完成后,模型会在测试集上进行验证,评估指标通常包括平均精度(mAP)、召回率和精确率等。 在深度学习模型训练中,选择合适的损失函数也很关键。对于YOLO,通常使用多边形 IoU(Intersection over Union)损失函数来衡量预测框和真实框的重叠程度。此外,还要考虑分类错误,这可能涉及二元交叉熵损失。 为了部署这个模型,我们需要将其转化为能够在实际环境中运行的轻量级版本,比如YOLOv3-tiny或者更小的模型架构。这可以通过模型剪枝、量化和蒸馏等技术实现。将模型集成到移动设备或监控系统中,可以实时监测工人是否佩戴安全帽,一旦发现违规行为,立即报警或记录,从而提升安全管理水平。 总结来说,这个安全帽检测数据集为开发一个高效、实时的安全帽检测系统提供了基础。通过使用YOLO框架,结合数据预处理、训练、验证和优化过程,我们可以构建出一个强大的目标检测模型,有效保障工人的生命安全。
2025-04-12 15:51:15 320.8MB yolo 目标检测 深度学习 数据集
1
TinyPerson是远距离且具有大量背景的微小物体检测的基准。TinyPerson中的图像是从互联网上收集的。首先,从不同的网站收集高分辨率的视频。其次,每50帧对视频中的图像进行采样。然后删除具有一定重复 (同质性) 的图像,并且用手用边界框用72,651对象注释所得图像。此文件中包含1532张,类别为earth_person和sea_person,所有图片已标注为txt格式,划分为训练集、验证集和测试集,可直接用于YOLO各个版本模型的训练。
2025-04-01 15:42:01 74.05MB 数据集 YOLO 目标检测 行人检测
1
数据集-目标检测系列- 消防车 检测数据集 fire_truck >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-01-07 15:52:37 7.04MB yolo 目标检测 python 计算机视觉
1
**rolabelimg.exe 可执行文件免安装配置/直接可用版 2024** **一、rolabelimg.exe 简介** `rolabelimg.exe` 是一个用于目标检测的图形用户界面工具,尤其适合处理需要进行旋转框标注的任务。它提供了便捷的方式来绘制和编辑带有旋转边界框的数据集,这对于训练像YOLO(You Only Look Once)这样的目标检测模型至关重要。 **二、免安装配置** 不同于许多需要安装的软件,`rolabelimg.exe` 提供了免安装的配置,用户只需下载压缩包并解压,无需进行复杂的安装过程。这使得用户能够在任何支持Windows系统的计算机上快速开始使用,无论是个人电脑还是服务器,大大简化了操作流程。 **三、源码链接** 在提供的文档中,包含了源码的链接地址。这意味着用户可以查看和修改源代码,根据自己的需求定制功能或者调试问题。对于开发者来说,这是一个非常宝贵的资源,可以深入了解软件的工作原理,并可能进行二次开发。 **四、旋转目标框的检测** `rolabelimg.exe` 的核心特性是支持旋转目标框的标注。在传统的对象检测任务中,边界框通常是矩形,无法精确地描绘出倾斜或不规则形状的目标。而`rolabelimg.exe` 允许用户绘制旋转的边界框,适应那些角度不规则的对象,如倾斜的文字、旋转的物体等,从而提高标注的准确性,进而提升模型的检测性能。 **五、与labelimg的关系** `rolabelimg` 可能是`labelimg`的一个扩展版本,专门为旋转目标框的标注优化。`labelimg` 是一个广泛使用的开源图像标注工具,主要用于矩形框标注,而`rolabelimg` 添加了对旋转框的支持,扩大了其应用范围。 **六、标签相关** 本工具关联的标签包括"labelimg"、"rolabelimg"、"yolo"和"目标检测"。这表明`rolabelimg.exe` 与`labelimg`具有一定的关联性,同时它是为YOLO框架训练目标检测模型而设计的。YOLO是一种实时目标检测系统,以其高效和准确著称,而`rolabelimg.exe` 正是为其提供高质量标注数据的工具。 **七、使用步骤** 1. 下载`rolabelimg.exe` 压缩包。 2. 解压缩到任意文件夹。 3. 打开`rolabelimg.exe` 文件,加载待标注的图像。 4. 使用工具栏绘制和编辑旋转边界框。 5. 保存标注结果,通常为`.xml` 或其他格式,与对应的图像文件一起构成标注数据集。 6. 将标注数据集用于训练YOLO或其他目标检测模型。 `rolabelimg.exe` 是一个方便且功能强大的旋转目标框标注工具,适用于需要处理复杂形状目标的机器学习项目。其免安装的特点和开放源码的策略,使其在科研和工程实践中具有很高的实用性。
2024-07-25 15:06:02 37.11MB labelimg rolabelimg yolo 目标检测
1
yolov8添加注意力机制-学习记录
2024-04-28 21:30:07 1.18MB yolo 目标检测
1
这个资源包含一个为Yolo目标检测模型特别设计的数据增强Python脚本。脚本采用多种数据增强技术,包括图像缩放(保持比例和下降比例)、随机水平和垂直翻转、中心裁剪,以及图像属性(亮度、对比度、饱和度)调整。此外,它还提供了高斯噪声、盐噪声和椒噪声的添加功能,使模型能够更好地处理现实世界中的图像。这些数据增强技术能够显著提高目标检测模型在多样化环境下的准确性和鲁棒性。 这个脚本非常适合机器学习和计算机视觉研究者,尤其是那些使用Yolo进行目标检测的开发者。通过本脚本,用户可以轻松地对他们的数据集进行增强处理,从而提高模型的泛化能力和性能。无论您是深度学习的新手还是经验丰富的研究者,这个资源都是您的理想选择。
2024-04-18 20:19:13 13KB python 目标检测 特征增强
1
均已标注好,划分为训练集验证集测试集,可直接用于训练 12356张训练集,1266张验证集,654张测试集
2024-04-09 19:22:44 265.79MB 目标检测 数据集
1
标注好的香烟数据集,用于yolo目标检测训练
2023-11-30 15:51:43 483.55MB 数据集 目标检测
1
YOLO目标检测数据集xml格式转txt格式,一键运行
2023-09-08 15:13:41 2KB 目标检测 数据集 yolo
1
yolov8源码+yolov8调试运行
2023-05-17 22:55:45 953KB yolov8 yolo 目标检测
1