绝缘子缺陷检测数据集VOC+YOLO格式795张4类别包含795张jpg格式的图片和对应的标注文件,这些标注文件主要分为Pascal VOC格式的.xml文件和YOLO格式的.txt文件。该数据集旨在为机器学习模型提供用于检测绝缘子上可能出现的四种缺陷:断裂、绝缘子、绝缘子链条断裂、污染闪络的训练和测试材料。 数据集的图片数量和标注数量均为795,每张图片都通过矩形框的方式标注出相应的缺陷类别,其中共包含四种类别的缺陷。这四种类别分别是:"breakage"(断裂)、"insulator"(绝缘子)、"insulator_string_broken"(绝缘子链条断裂)、"pollution_flashover"(污染闪络)。每种类别的缺陷标注框数分别为:断裂数量为512个,绝缘子数量为974个,绝缘子链条断裂数量为239个,污染闪络数量为847个。这些框的总数量为2572个。 标注工具使用的是labelImg,它是一款流行于机器学习社区的标注软件,尤其适用于目标检测的标注任务。标注规则简单明了,就是使用矩形框对图片中的缺陷部分进行标注。需要注意的是,在YOLO格式中,类别顺序并不与Pascal VOC格式中的顺序相对应,而是以labels文件夹中的classes.txt文件为准,这说明在使用该数据集进行YOLO格式的数据准备时需要参照classes.txt文件。 此外,数据集的制作者特别提到,他们不为使用该数据集训练得到的模型或权重文件的精度提供任何保证。这意味着数据集使用者应该自行评估模型的性能,并对模型结果负责。制作者承诺数据集中的图片和标注是准确且合理的,为用户提供了一定程度的信任基础。 在实际应用中,这样的数据集对于电力系统维护、自动化检测和故障诊断具有重要意义。通过使用这些数据集,可以训练出能够自动识别绝缘子缺陷的计算机视觉系统,从而提高电力系统的稳定性和安全性。对于研究者和工程师而言,这样的数据集是开发和测试新型算法的宝贵资源,特别是那些涉及到目标检测和图像分类的算法。 对于绝缘子缺陷的检测,涉及到的关键技术包括但不限于图像采集技术、图像预处理技术、目标检测算法、机器学习和深度学习模型等。通过上述技术,可以实现对绝缘子图像的自动处理和分析,并识别出缺陷的位置和类型,这在电力系统的巡检和维护中具有极高的应用价值。 绝缘子缺陷检测数据集VOC+YOLO格式795张4类别是一个用于计算机视觉应用的资源,特别是目标检测和图像分类领域。该数据集可以用于学术研究、技术开发和工业应用等多个方面,对于提高电力系统的运维效率和安全具有重要的促进作用。
2025-08-15 16:52:04 2.61MB 数据集
1
铁轨表面缺损检测数据集是一个针对特定目标检测任务而设计的数据集,包含了4789张标注图片,采用Pascal VOC和YOLO两种通用格式。VOC格式包括jpg格式的图片文件和相应的xml标注文件,而YOLO格式则包括图片文件和txt标注文件。数据集中的图片数量、标注数量与标注类别数均为4789,标注类别分为两类,分别是“Spalling”(脱裂)和“Trilho_bom”(良好)。 “Spalling”类别拥有3198个标注框,而“Trilho_bom”类别拥有3114个标注框,总共6312个标注框。对于标注工具,本数据集采用的是广泛使用的labelImg工具,便于研究人员进行目标检测模型的训练与评估。标注规则是通过在目标物周围绘制矩形框来实现。尽管数据集提供了详尽的标注信息,但制作者特别声明,不对利用该数据集训练出的模型或权重文件的精度提供任何保证。 数据集的准确性和合理性对于机器学习模型的性能至关重要。本数据集的目标检测任务是识别并标注铁轨表面的缺损情况,例如脱裂。这对于铁路维护和安全管理具有实际意义,可以作为自动检测系统的基础数据。通过细致的标注,训练出的模型可以准确识别铁轨表面的缺陷,进而帮助工程师及时进行维护工作,预防可能发生的事故。 此外,该数据集可以被广泛应用于计算机视觉和深度学习领域中的目标检测研究。对于初学者和研究人员而言,这是一个很好的资源,不仅提供了丰富的标注图片,还提供了YOLO格式的标注,该格式在实时目标检测应用中非常流行。数据集还提供了一个标注示例的下载链接,有助于理解数据集的具体结构和内容。 该数据集也具有商业应用潜力,例如铁路检测公司可以使用这个数据集来训练自己的模型,以自动识别铁轨缺陷,提高检测效率和准确性。此外,教育机构和研究者可以通过这个数据集教授和研究目标检测技术,提升学术研究与实践能力。 该铁轨表面缺损检测数据集为相关领域的研究提供了有力的数据支撑,有助于推动技术进步和安全保障。同时,数据集的开放性和易用性也将促进更多创新研究和应用的产生。
2025-08-15 11:35:36 2.29MB 数据集
1
电力行业在日常运作中十分重视安全管理,其中变电站作为电力系统的关键组成部分,其运行安全直接关系到电力供应的稳定性和可靠性。在变电站中,工作人员进行各项操作时必须遵守严格的安全生产规范,其中一个重要的安全设备就是绝缘手套。绝缘手套不仅能保护工作人员免受电流的伤害,同时也是保障变电站安全运行的关键防护用具。因此,变电站工作人员在操作过程中正确佩戴绝缘手套是基础操作规范之一。 为了确保变电站工作人员能够正确佩戴绝缘手套,就需要有一套规范的检测和监督机制。在这种背景下,出现了“电力场景变电站绝缘手套佩戴规范检测数据集VOC+YOLO格式2084张6类别”的数据集。这个数据集的作用是为了解决绝缘手套佩戴不规范的问题,通过机器视觉的方法对变电站内的工作人员进行实时监控,自动识别出绝缘手套是否佩戴规范。 数据集采用的是Pascal VOC格式和YOLO格式相结合的方式,它包含了2084张jpg格式的图片以及相对应的标注文件,标注文件则包括了VOC格式的xml文件和YOLO格式的txt文件。这些图片来源于真实的变电站工作场景,每一幅图片都经过了精确的标注,标注信息涵盖了六个类别,具体包括:“badge”(工作证)、“glove”(绝缘手套)、“operatingbar”(操作杆)、“person”(人员)、“powerchecker”(检测工具)以及“wrongglove”(错误佩戴的绝缘手套)。每个类别的标注信息中都包含了若干矩形框,这些矩形框代表了相应类别的具体位置,用于机器学习训练中的目标检测和识别。 数据集中各类别的标注框数量不一,例如“glove”类别的标注框数最多,为1494个,而“badge”类别的框数则最少,为646个。整个数据集的总标注框数达到了11474个,这些详尽的数据为机器学习提供了丰富的样本,以便训练出能够准确识别变电站中人员佩戴绝缘手套状况的算法模型。 在实际应用中,数据集用于训练目标检测模型,如YOLO(You Only Look Once)算法,它是一种实时的、高效的、常用于目标检测的深度学习算法。数据集内含的标注规则是使用labelImg工具画出矩形框来标注每类对象,这些矩形框严格地对目标进行了定位和分类。值得注意的是,该数据集并不提供任何关于训练模型或权重文件精度的保证,但可以保证所标注图片的准确性和合理性。 此外,虽然该数据集的具体应用目的是在电力场景下进行绝缘手套佩戴规范的检测,但它同样可以被应用于其他的安全性检测中,例如穿戴安全帽、防护服等其他安全设备的检测,具有一定的通用性和应用价值。这个数据集的发布为电力行业安全操作的机器视觉辅助监控提供了强有力的支撑,有助于提升变电站乃至整个电力行业的安全管理水平。
2025-08-12 22:04:42 1.2MB 数据集
1
零售柜零食检测数据集是一个专门用于目标检测领域的大规模数据集,它包含了5422张零售环境中零售柜内零食商品的图片。这些图片采用了两种业界广泛使用的标注格式:Pascal VOC格式和YOLO格式。Pascal VOC格式通过XML文件来标注图片中的目标对象,而YOLO格式则使用txt文件记录目标对象的位置信息。 数据集共计113种不同的零食类别,每种零食类别都配有相应的标注框信息。这包括了各种不同品牌、口味、类型和包装的零食,例如3+2-2、3jia2、aerbeisi、anmuxi、aoliao、asamu等。每一种类别都有对应的标注框数量,比如“3+2-2”类别拥有1733个标注框,“3jia2”类别拥有173个标注框,“aerbeisi”类别有61个标注框,依此类推。这些标注框的目的是为机器学习和计算机视觉算法提供训练样本,以实现对零售柜内零食商品的准确识别和分类。 数据集中的每张图片都配有与其相应的标注文件,确保了数据的一致性和完整性。图片数量与标注文件数量均为5422张,确保了算法训练时不会有数据缺失。此外,标注类别数达到113种,丰富了数据集的多样性,有助于算法学习识别更多种类的商品,提升模型的泛化能力。 零售柜零食检测数据集的推出,将对零售业内的智能监控和商品识别带来积极影响。例如,通过此数据集训练的算法可以应用在自动结账系统、库存管理、商品摆放监测以及销售数据分析等领域。这不仅能够提高零售业的工作效率,减少人力资源成本,同时也为消费者带来了更为便捷的购物体验。 此外,零售柜零食检测数据集的细节信息,如图片的具体名称、标注细节等未在给定的文件内容中直接提及。为了保证数据集的使用效果,研究人员和开发者需要对数据集进行详细的了解和分析,以充分理解各类零食的特性和识别难点。在使用数据集进行目标检测训练时,还应结合实际应用场景,进行相应的预处理、增强等操作,以适应不同的环境变化和需求。 零售柜零食检测数据集是一个具有极高实用价值的资源,它不仅能够推动零售行业的技术创新,还能促进相关学术研究的发展,具有重要的应用前景和研究价值。
2025-08-12 16:50:08 1.41MB 数据集
1
目标检测是计算机视觉领域的重要任务之一,它旨在识别出图像或视频中所有感兴趣的目标,并确定它们的位置和类别。在本篇文章中,我们重点介绍了一个针对战斗飞机目标检测任务而构建的数据集,该数据集包含了15292张经过增强处理的图片,遵循YOLO和VOC两种格式进行标注。 数据集采用VOC格式与YOLO格式相结合,包含了三个主要的文件夹:JPEGImages、Annotations和labels。JPEGImages文件夹内存储了15292张jpg格式的图片,它们是目标检测任务中识别对象的图像来源。Annotations文件夹内包含了与图片相对应的xml标注文件,这些文件记录了图片中对象的位置以及标注信息。Labels文件夹则包含了与YOLO格式相对应的txt标注文件,它们同样用于指导模型进行目标检测。 数据集中的标签仅包含一种,即“fighter”,代表了我们的目标是检测战斗飞机。标签种类数虽然只有1种,但总共的标注框数达到了19477,这表明数据集中有许多战斗飞机的实例,因此丰富了数据集在战斗飞机目标检测这一任务上的表现能力。标注框的形状为矩形框,这在目标检测领域是常见的标注形式,有助于模型对目标的精确定位。 本数据集特别强调,图片的清晰度是符合要求的,且所有图片都已经过增强处理。图片增强是指通过各种技术手段改善图像质量,包括调整亮度、对比度、添加噪声、旋转、翻转等,以提升模型的泛化能力,使其能更好地处理各种条件下的目标检测任务。 数据集的分辨率高度清晰,这对于目标检测算法来说至关重要,因为目标的细节信息有助于模型准确地识别出目标。数据集还特别声明,图片经过了增强处理,这对于提高模型在现实世界中的实用性和鲁棒性有非常积极的作用。 数据集的类型被特别标注为“150m”,这可能是对数据集质量或者特定应用场景的说明,具体含义需要结合实际背景来解释。需要强调的是,该数据集不保证任何训练模型或权重文件的精度,仅仅保证标注的准确性和合理性。这是一个非常重要的声明,它提醒用户在使用数据集时,应当有适当的预期,并且能够对数据集进行进一步的质量检验和验证。 这个经过增强处理的15292张战斗飞机数据集,采用YOLO和VOC两种格式,具有清晰的图片质量和数量巨大的标注框,为研究者和开发者提供了一个宝贵的资源,用以训练和测试战斗飞机目标检测模型的性能。通过该数据集,可以有效地提升目标检测算法在特定场景下的识别能力,对提高目标检测技术的实际应用价值有着重要的意义。
2025-08-10 22:15:25 4.27MB 数据集
1
在当前迅速发展的计算机视觉领域中,目标检测技术是基础且关键的组成部分。本篇文档介绍的是一套特定的数据集——天空小目标数据集,特别针对飞机的检测,总共包含了1103张标记图像。这套数据集采用两种主要格式:VOC格式和YOLO格式,以适应不同目标检测框架和算法的需求。 数据集文件结构十分清晰,包含了三个关键的文件夹:JPEGImages、Annotations和labels。JPEGImages文件夹中存储了所有的jpg格式图片,共计1103张,这些图片都是从天空的场景中捕获,专门用于检测其中的小目标——飞机。Annotations文件夹则存放了与图片对应的标注信息,每个图片对应一个xml文件,记录了图像中目标的位置和类别等信息,总计也有1103个。最后的labels文件夹包含了txt格式的标签文件,每个图片对应一个txt文件,其中记录了目标的具体类别信息。 在标签方面,该数据集专注于一类目标,即飞机,因此标签种类数为1。对应的,标签名称为"airplane"。值得注意的是,虽然数据集中仅包含一种标签,但标注的飞机实例框数却高达2096个,这样的设计可能是为了更好地捕捉飞机在不同大小、角度、遮挡情况下的变化,从而提高目标检测的鲁棒性和准确性。 就图片质量而言,本数据集保证了图片的清晰度,具体分辨率虽然未提及,但可预期的是较高的分辨率能够提供更多的细节,便于算法进行特征提取。同时,文档中明确指出图片没有经过增强处理。在目标检测领域,不同增强方法可能会引入额外的变量,影响模型训练的一致性和最终性能评估的准确性。 目标的标注形状为矩形框,这是目标检测中常用的标注方法,它简洁明了地表达了目标的位置和大小信息。这些矩形框被用来定义“真实边界框”(ground truth bounding box),为训练目标检测模型提供了关键的指导。数据集包含的具体标注细节,如框的位置坐标等,虽未详细展示,但可以想象每个xml文件会精确地给出目标的详细标注信息。 文档特别指出,本数据集不保证对训练模型或权重文件的精度有任何保证。这意味着,尽管数据集提供了准确且合理标注的数据,但模型的最终性能还需依赖于训练过程和所选用的算法。这样的声明既反映了数据提供者对数据质量的自信,也避免了使用者对数据集性能的误解。 在实际应用中,这套数据集可以被用于训练和测试各种目标检测模型,例如基于深度学习的卷积神经网络(CNN),或者传统的机器学习方法。鉴于数据集的特定性,它特别适合用于航空、国防或安全监控领域的相关研究和开发工作。这套数据集的发布,无疑为相关领域的研究者和工程师提供了宝贵的资源,有助于推动目标检测技术在特定场景中的发展和应用。
2025-08-10 22:14:30 1.02MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144173742 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3429 标注数量(xml文件个数):3429 标注数量(txt文件个数):3429 标注类别数:6 标注类别名称:["boat","floater","floater_on_boat","life_jacket","swimmer","swimmer_on_boat"] 每个类别标注的框数: boat 框数 = 8756 floater 框数 = 6705 floater_on_boat 框数 = 1805 life_jacket 框数 = 64 swimmer 框数 = 2938 swimmer_on_boat 框数 = 3478 总框数:23746 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无
2025-08-09 16:45:09 407B 数据集
1
茶叶病害检测数据集是一项专门针对茶叶病害进行目标检测的数据集,其数据集格式包括Pascal VOC格式和YOLO格式。该数据集包含了9591张jpg格式的图片和与之对应的标注文件,标注文件包含VOC格式的xml文件和YOLO格式的txt文件。图片数量、标注数量以及VOC格式和YOLO格式的标注文件数量均为9591份,说明每个图片都配有相应的标注信息。 标注类别数为8,具体类别名称分别为:“Black rot of tea”(茶黑斑病)、“Brown blight of tea”(茶褐色斑病)、“Leaf rust of tea”(茶叶锈病)、“Red Spider infested tea leaf”(茶红蜘蛛侵染叶片)、“Tea Mosquito bug infested leaf”(茶小绿叶蝉侵染叶片)、“Tea leaf”(茶叶)、“White spot of tea”(茶白星病)、“disease”(病害)。各类别标注的框数不一,其中“Red Spider infested tea leaf”标注框数最多,为1022个,而“Brown blight of tea”标注框数最少,为8个。所有类别总计标注框数为12812个。 使用标注工具为labelImg,该工具是一种常用的图像标注软件,支持绘制矩形框来标注目标对象。由于数据集采用矩形框进行标注,这意味着目标检测模型在处理时将针对病害区域进行定位和分类。 数据集的标注规则是针对不同病害类别进行画矩形框标注。每个矩形框对应一个目标病害实例,并且包含病害的类别信息。这种标注方式使得模型训练后可以对茶叶图像中的病害区域进行检测,并识别出病害的种类。 本数据集未提供图片预览,但标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 此外,重要说明部分为空,说明作者没有给出额外需要注意的信息。但是,标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 茶叶病害检测数据集为研究者和开发者提供了丰富的图像和标注信息,用于训练和测试目标检测模型,从而实现对茶叶病害的自动识别和分类。该数据集对于推动智能农业和精准植物保护具有潜在的积极作用,尤其是在提升茶叶生产的质量和效率方面具有重要意义。
2025-08-07 09:34:02 4.2MB 数据集
1
淡水鱼检测数据集是针对31种不同类别的淡水鱼进行的视觉检测项目。数据集包含2967张图片,采用Pascal VOC格式和YOLO格式进行标注,每个图片都配有相应的VOC格式xml文件和YOLO格式txt文件。这两种格式文件分别用于不同的图像识别任务,其中Pascal VOC格式主要应用于图像识别与标注,而YOLO格式常用于实时对象检测系统。 数据集中的每张jpg格式图片都通过人工识别并标记出淡水鱼类的具体位置。每个标注对象都用矩形框框出,并配有相应的类别名称。这些类别名称有31个,包括Bangus(皇冠鱼)、Big Head Carp(大头鱼)、Black Spotted Barb(黑点鲫)、Catfish(鲶鱼)等,具体涵盖了多样的淡水鱼类。 对于标注的具体实施,数据集使用了labelImg这一标注工具,该工具常用于为计算机视觉项目创建标注数据。使用该工具进行标注,主要是通过在图片上绘制矩形框来标记出不同鱼类,并且为每个框分配一个类别标签。 在数据集的每类淡水鱼中,标注的框数是不一致的,例如Catfish(鲶鱼)框数为84,而Goby(虾虎鱼)框数则达到118。总框数为4304,这提供了丰富的检测样本,有助于训练和验证图像识别与目标检测模型。 值得注意的是,数据集的类别顺序在YOLO格式中并不与Pascal VOC格式完全对应。而是根据YOLO格式使用的labels文件夹中的classes.txt文件中的顺序来确定。这样的设置允许使用YOLO格式的数据集在实际应用中更方便地调整类别顺序。 此外,数据集包含一个重要说明,即不对使用此数据集训练出的模型或权重文件的精度作出任何保证。这一声明提醒使用者在使用数据集时,需要自己评估和测试模型的准确性。同时,数据集提供了一定的图片预览和标注例子,使得使用者能够快速了解数据集的结构和标注方式,从而有效利用数据集进行机器学习或深度学习的训练。 这个数据集可以应用于多种场合,比如水生生物的研究、生态监控、渔业管理等。而且,由于数据集的规模较大,并且类别众多,它特别适合用于深度学习中的目标检测和图像分类任务。通过这类数据集的训练,可以使计算机视觉系统在识别不同种类淡水鱼方面达到较高的准确率和效率。
2025-08-05 21:34:17 1.87MB 数据集
1
内陆淡水鱼分类检测数据集的知识点主要包括以下几个方面: 1. 数据集的基本信息:数据集包含2857张图片,这些图片是针对12种内陆常见的淡水鱼所进行的目标检测标注。图片遵循VOC格式,并以YOLO格式进行标注,这意味着该数据集适合用于训练和测试基于YOLO算法的目标检测模型。 2. 数据集文件结构:数据集主要包含三个文件夹,分别用于存放不同类型的文件。JPEGImages文件夹存储了所有的jpg格式图片文件, Annotations文件夹存放了与图片对应的标注文件,这些标注文件为xml格式,用于描述目标检测框的位置和标签信息。labels文件夹中包含了txt格式的标签文件,这些文件记录了对应目标框的类别索引。 3. 标签类别和数量:该数据集包括12种淡水鱼的分类标签,它们分别是草鱼(caoyu)、黑鱼(heiyu)、鲫鱼(jiyu)、链鱼(lianyu)、罗非鱼(luofeiyu)、鲈鱼(luyu)、鲶鱼(nianyu)、青鱼(qingdaofu)、小黄鱼(xiahuyu)、鲟鱼(xunyu)、鱼(yongyu)、子鱼(ziyu)。每个标签的框数不同,如草鱼有3个检测框,而小黄鱼则有614个检测框。总共有3164个目标检测框用于标注。 4. 图片质量与增强:图片均为清晰图片,分辨率为像素级别,具有良好的视觉识别度。但数据集中的图片并未进行额外的图像增强处理。 5. 标注说明:标注的方式是矩形框,用于目标检测任务中的目标识别和位置定位。这些矩形框的标注是准确且合理的,能够为模型训练提供有效的识别信息。 6. 使用注意事项:数据集的制作者明确指出,对于数据集训练得到的模型或权重文件的精度不作任何保证。数据集的使用者在使用该数据集时需要清楚这一点,并自行负责模型的开发和训练过程。 7. 数据集的应用:这个数据集非常适合用于计算机视觉领域的研究和应用,尤其是深度学习模型的训练,可以用于提高目标检测算法在淡水鱼类识别方面的性能。 8. 数据集的推广和研究价值:该数据集将有助于淡水渔业管理、生态系统监控以及智能渔业技术的发展,为相关领域的研究人员和从业者提供了一个宝贵的资源。 【目标检测】12种内陆常见淡水鱼分类检测数据集为研究人员提供了丰富的标注图片资源,对于提升和优化目标检测算法在特定场景下的识别精度具有重要作用。通过对这些标注数据的学习,可以更好地构建和训练深度学习模型,进而应用于更多与水生生态系统监测相关的项目和研究中。
2025-08-05 21:27:17 6.09MB 数据集
1